
Issue Number 79 Fall 1996 US $4.00

Reader to Reader Letters and messages

XT Corner PC Serial Port in Forth

Program This! AT Modem COI!!!Dands

Small System Support C and Assembler

Computer Corner Busy Summer

ISSN # 0748-9331 Hands-on Hardware and Software

Hiding in Plain Sight•••

Some of the most interesting, challenging
programming is being done outside the
prevailing paradigms. It's been this way for
years, and some companies regard its SPEED,
COMPAC1NESS, EFFICIENCY and VERSATILITY
as their private trade-secret weapon.

It has penetrated most of the FORTUNE 500,
it's a veteran in AEROSPACE, it's in SPARC
WORKSTATIONS, and it's how "plug and play"
is implemented in the newest POWER PCS.
In fact, it's lurking around a lot of corners.

It's FORm. Swprised? Call now to sub
scribe* and learn more about today's Forth.

Forth Dimensions
510·S9·FORTH Fax: 510·535·1295

*Ask for your free com' of "10 Ways to Simplify Programming"

•

SUPER
1.££18l

INTRODUCTORY

'.NIT PH I CE
$125.00

KART COMPUTERS
P.o. Boll: 14"

.uUbury.wa.OI527
(508) 755-9778

[

UNITS PRICE JI' •••••••• S250.00
2 S200.00
.......... $150.00
8 S125.00

I» » » IiNGINEU ALIiKT « « « I
~;;;;ii=~ . £\l3~~@~~

llil""j,ij;;im', Z~~ CoHPUffll
. . Perfect for ProJect or Product

-():()::O:O . i
•••• INCLUDES····

KEYBOARD (l7"x7"x2.5-) MOTHERBOARD
- Du,.abl. PIntle. 66 K.lI. - 4 "Hz ZOOA
- 2 Coell.cto... fDr" JOllStlCk. - 64lC DlInamlc IIA"

_ _ _ - 411:/61(EPIID"
ENCLOSURE 011.5 Xii X4} _ T"S 9918 Vld.o DI.pllllllJ6K)
- Cont.ln. Pow.r SUPplll .. "otll.noo,.d _ AY-]-89I 0 Sound 6lnl... tor
- F,.oftt: ON/OFF .. R.s.t Swltcll••• LED. _ 4 Slot. fa,. 110 cera.
o II.Ck: 7 COftnnto..... " 110 paMI. ON PDARD liD
- ,..t.1 c •••• Erf.cllve IIF SIlI.ldlnll -Audio output

POWER SUpPLY -vlaeo Output
- 40 w.tt. AC/OC Swltcllllll -CH]/4 RF "odulatO,. Output
- '5Ve2.5A; .,2ve2.0A; -12VeO.I" -[xll,.el. IlF Input

-"."bO.,-1II Interface
...uUlul Cloercoal Grs., 0..'1"' -Prletl,. Inll,.roci (1'1,..II.n
--------------- ·S.raal Inte,.reC8 (NS-..22)
Sp«tal Computer Jourllal Prlcs' _" Clrd Slot.

Kibler Electronics SAGE MICROSYSTEMS EAST
Serving the

Industrial Electronics Community
since 1978

Selling and Supporting the Best in S-Bit Software

Specializing In
Hardware Design and

Software Programming

Previous Projects include:
PLC ladder programming (15,000 lines)

8051 Remote I/O using MODBUS
6805 Instrumentation Controller

68000 Real Time Embedded Operations
NETBIOS programming and Debugging

Forth Projects and Development
HTML Design and programming

Articles, Training, and Documentation

Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BOOS ($30)

ZCPR34 source code ($15)
BackGrounder-ii ($20)

ZMATE text editor ($20)
BDS C for Z-system (only $30)

DSD: Dynamic Screen Debugger ($50)
ZMAC macro-assembler ($45 with printed manual)

Kaypro OSOO and MSDOS 360K FORMATS ONLY
Order by phone, mail, or modem and use

Check, VISA, or MasterCard. Please include

$3.00 shipping and Handling for each order.

Bill Kibler
Kibler Electronics

P.O. Box 535
Lincoln, CA 95648-0535

(916) 645-1670

e-mail: kibler@psyber.com
http://www.psyber.com/-kibler

Sage Microsystems East
1435 Centre Street

Newton Centre MA 02159-2469
(617) 965-3552 (voice 7PM to 11 PM)

(617) 965-7046 BSS

Letters from and to our readers.

And in this issue...

Back Issues ..•.................44

TCJ Want Ads 48

Issue Number 79, Fall 1996

The Computer Journal

High Speed Modems and CP/M 17
Using 14.4k Modems with CP/M Modem Programs.
By Terry Hazen

Mr. Kaypro...................................•.......................•••.-... 14

Simplex III•...20

Editor's Column•.............:...........•..•..••2

Embedded Development Choices 31
Low cost software development
By Bill Kibler

Real Computing 27
Real-time Control
By Rick Rodman.

P112 Z182 CP/M board
by Dave Brooks

Center Fold•.........: .•.................•.23

Homebuilt microcoded TIL processor, Part 2.
By Dave Brooks.

Reader to Reader..•........3

Internal Modem.
By Charles B. Stafford

XT Corner ...••..........5
The PC Serial Port in Forth.
By Frank Sergeant

The AT Modem Commands
By David Goodenough

Program This! ...•......11

TCJ Store 41
Things for sale from TCJ.

Support Groups for the Classics 42

Small System Support 35
C and Assembler - 68xx
By Ronald W. Anderson.

The Computer Corner ..•......46
Busy Summer
By Bill Kibler.

TCJ
The Computer Journal

Founder
Art Carlson

Previous Publishers
Bill D. Kibler

Chris McEwen

EditorlPublisher
Dave Baldwin

Technical Consultant
Bill D. Kibler

Contributing Editors
Herb Johnson

Charles Stafford
Brad Rodriguez

Ronald W. Anderson
Helmut Jungkunz
Frank Sergeant

Richard Rodman
Tilmann Reh

The Computer Journal is pub
lished six times a year and mailed
from The Computer Journal, P.O.
Box 3900, Citrus Heights, CA 95611,
(916) 722-4970.

Opinions expressed in The Com
puter Journal are those of the re
spective authors and do not neces
sarily reflect those of the editorial
staff or pUblisher.

Entire contents copyright © 1996
by The Computer Journal and re
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates Within the
US: $24 one year (6 issues), $44
two years (12 issues). Send sub
scription, renewals, address
changes, or advertising inquires to:
The Computer Journal, P.O. Box
3900, Citrus Heights, CA 95611
3900.

Registered Trademarks
tt is easy Ie get in the habit of using company

trademarks as generic tenns, but these trademarks are
the property of the respective companies. tt is important
Ie acknowledge these trademarks as their property Ie
awid their losing the rights and the tenn becoming pub
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we ha..
ove<Iooked.

Apple II, 11+, lie, lie, Lisa, Macintcsh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DaleSlamper, BackGrounder ii,
Dos Disk; Plu'Perfect Systems. Clipper, Nantucke~

Nantucket, Inc. dBase, dBASE II, dBASE III, dBASE III
Plus, dBASE IV; Ashlen-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordSlar; MicroPro Inter
national. IBM-PC, Xl, and AT, PC-DOS; IBM Corpora
tion. Z80, Z280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromin~ Inc.

Where these and other tenns are used in The
CompulN Journal, they are acknowledged Ie be the
property of the respective companies eYen ~ not specifi
cally acknowledged in each occurrence.

2

Editor's Column

Well, I'm late again, but I'm still here. David McGlone's
Z-Letter has ceased publishing, and Chuck Stafford and
Herb Johnson have stopped doing regular columns to pur
sue other interests although we may see occasional articles
from them. TCJ has taken over Chuck's Kaypro business
and the TCJ Kaypro catalog is on the TCJ Store page.

I want to thank those who responded to the last flyer. All
those renewals made this issue possible. TCJ counts on
your renewals to get each issue printed. Check the date on
your address label to make sure you're not going to miss
anything.

I'm going to try to get -the next issue out by the end of
January. That will mean sending in renewals over the
Christmas season, always a bad time, but that's what it takes
to get the next issue printed.

Because TCJ focuses on projects that one person can 'do-it
themselves', that means we're kind of at the low end of
computing, both in technology and cost. After all, there's
no way you're going to spend $500 or more to get software
for a hobby project board that cost less than $100 (less than
$251). There are, however, quite a number of small busi
nesses that operate pretty much the same way. (I've done
work for a few of them.) No money for tools, hardware or
software.

My goal is to try to get articles to help both the hobbiest and
those stuck in low/no budget situations along. Part of that
is making sure that the authors have actually used and
tested the projects they're writing about. Another part is
providing source code and the schematics so you can 'do-it
yourself'. And software is made available to help you such
as the 6502 assembler Doug Beattie provided with his 6502
DIY board article. You can download the software from the
TCJ Web page or the TCJ/DIBs BBS. This is as close to
'free' as I can make it.

Towards that end, I'm always looking for articles, sugges
tions, and requests. Let me know what you're looking for.
Your project may end up as a TCJ article. And check the
TCJ Back Issues too. It may have already been done.

Dave Baldwin
Editor/Publisher

The Computer Journal
800-424-8825/916-722-4970
Fax: 916-722-7480
BBS: 916-722-5799
Web Page: "http://www.psyber.com/-tcj/..
Email: tcj@psyber.com

And in this issue...

This must be the Modem issue! Frank Sergeant leads off
with The PC Serial Port in Forth. Next is David
Goodenough with The AT Modem Commands in Program
This! This is a very complete article. Every time I would
think of something else that should be in it, it would be
there when I re-read it. Good job.

Mr. Kaypro tells us how to install an Internal Modem in
your Kaypro and Terry Hazen talks about High Speed
Modems and CP/M which is about using 14.4k modems
with CP/M modem programs.

Dave Brooks has two articles this time. Part 2 of his
Simplex In series is here and the Centerfold is his PIl2
Zl82-based CP/M board.

Real Computing by Rick Rodman covers Real-time control
in his home environment and includes some more sample
code for network communication. In Embedded Develop
ment Choices, Bill Kibler responds to a reader's letter that
requested some info on low cost development.

Ron Anderson cleans up a few details in Small System
Support and Bill Kibler tells about this summer and things
in progress. As always, the TCJ feature and listings are at
the back including the TCJ Store, the Support Groups,
and the Back Issues listings.

Future Issues

I have a number of articles lined up for the next few issues
already. Lots ofDIY stuff with schematics and source code.

Tilmann Reh (who designed the GIDE kits and many other
projects) has sent me an article on his Eprom Simulator.
Hal Bowers is sending an article on his BIP Bios for the
Ampro Z80 Little Board, the Micromint SB180, and Dave
Brooks PIll.

I also have an article in progress on a homebuilt 6809 board
from Frank Wilson with source code for both the 6809 and
for the PC programs for downloading and communications.

We're going to start covering a number of common I/O
devices that come up again and again.

We'll cover interfacing the standard LCD character displays
with source for at least the Z80 and the 8031. Maybe I can
get someone to provide code for some other CPU's.

We're going to revisit stepper motors also. There have been
a number of articles about simple stepper interfaces. We'll
show you a more sophisticated system and the power sup
plies required to really get them moving.

The Computer Journal / #79

READER to READER

From: Herbert R Johnson
<hjohnson@pluto.njcc.com>

To: tcj@psyber.com

The Doctor is retired but still sees pa
tients...

Although I'm not writing my "Dr.S
100" column, I'm still working the S
100 turf via the Internet and corre
spondence. The Usenet's comp.os.cpm
maillist is more active than ever, with
several messages a day. That's quite a
lot of traffic for an OS that is about 18
years old! Many people are still look
ing for S-loo stuff and support, or ask
ing about the S-100 bus. I recommend
looking over the CP/M FAQ (note to
editor -where is this archived? - Herb)
and The Computer Journal's Web
page, as well as TCl's "paper archive"
of back issues of my column and many
other resources.

Most S-100 interest these days is in
Compupro equipment. The "Cadillac"
of personal and industrial computers
of the early 1980's, Compupro pro
duced 68000, 80286 and 80386 sys
tems that outperformed IBM PC's of
the era. Now that these are surplus,
many people who coveted these now
want one cheaply; and folks who once
developed on these system are letting
them go to a good home (sometimes
via my basement) rather than landfiU.

Despite the Internet, I stiU get some
paper mail. Some time ago, I contacted
Rlee H. Peters, a retired AF officer and
collector of S-100 stuff, who wrote a
letter on S-100 stuff in David
McGlone's Z-Letter. Rlee kindly sent
me his list of stuff, and recently a
followup letter on my TCJ columns.
His efforts are encouraging to aU of us,

The Computer Journal / #79

and interested readers should contact
him directly. One reason I keep a hand
in the S-100 world is that it brings me
in touch with good people from around
the world.

Herb Johnson, aka "Dr. S-100"
hjohnson@pluto.njcc.com

Letters to the Doctor - from Rlee Peters

"I was just rereading your column in
TCJ #78, where I noticed that one of
your customers was looking for 8" 10
Meg Bernoulli disks. I upgraded to the
5-inch 150 Meg version and have 16 of
the 8-inch disks left. [Note: I have some
of these too - Herb]. Three are stiU in
plastic, two loaded with CP/M 80 ftles,
and the rest new or formatted. I also
have an S-100 interface and IBM PC
bootable interface, and a cleaning disk.
No documentation.

"The customer who wants to put an 8"
[soft sectored] drive on his North Star
is weU advised to),lse his [Morrow] OJ
20 controUer for that; I have used this
combo for many years ... UNFORTU
NATELY you can boot one or the other
or swap easily but not copy 5 to 8
easily unless you use the software my
brother wrote to do that. Ijust finished
rewriting the [Morrow] E4 BIOS to
talk to the North Star disk but have not
debugged it yet. The other approach
would be to change to the Morrow
DJDMA board which supports 5" hard
sector, 5" soft sector and 8" soft sector,
using the E4 BIOS. I have this in my
North Star now with a Morrow
HDDMA board with a 20 Meg
harddrive... .1 have docs, boot disks and
BIOS code. This setup only runs CP/
M. Ifhe wants to run NS DOS there is
a CP/M program to run it...and a pro-

gram to copy files between them, [in
an article I have copies of].

"For the guy with the Compupro 68K
boards, I have the documentation on
them and DR CP/M 68K. .."

RIee has a number ofS-l00 cards, some
in quantity, including Morrow
Wunderbuss motherboard cards, Mor
row 256K memory cards; "and a sup
ply of 8" double sided drives, some
even half height. Got lots of kinds of
boardsL..Your column is always inter
esting, keep up the good work!"

(signed) Rlee H Peters,
1600A N Sierra View, Ridgecrest CA

93555-2438 LT Col USAFA
(Ret) GS-12 (Ret)

From: Harold Bower
<HalBower@msn.com>

To: tcj@psyber.com

Dave,

Just received your note to TCJ sub
scribers, and wiU be sending you an
early renewal because I don't want to
see the last bastion get in too much
trouble. You have probably also heard
that David McGlone is folding his Z
Letter and business.

This past Spring, I took the most re
cent issue of TCJ with me to the Tren
ton Computer Fest in New Jersey, and
your newly-adopted banner created a
big splash.."Supporting the Trailing
Edge of Technology". I showed off a
modified YASBEC laptop which was
modified to include "High-Density"
floppy support by replacing the West
ern Digital 1772 controller with a Na
tional DP8473, and a monochrome

3

4

VGA LCD kit from Earth Computer
Technologies. The entire system runs
from 12 vdc and had a 1.76MB floppy,
45 MB Conner SCSI drive and 256k of
RAM. The operating system was an
adapted version of my BIP Bios and
the Banked ZsDos2. The system sees
much use here at home, normally on
my lap in the living room easy chair.

This past Summer, David Brooks re
leased his PIl2 Z182-based system on
the footprint of a 3.5" floppy. I have
adapted the BIP System to it, designed
and built a SCSI controller, and have
it running as well. It is quite an im
pressive little board with several "mod
em" features which some migh~ like
to toy with such as Flash ROM, Bat
tery-backed-up RAM for storing pa
rameters, etc. It might even be pos
sible to adapt one of the Earth Tech
LCD systems into it as well (already
bought one, and should start working
on it after Christmas).

Several years ago when TCJ was in the
process of moving to your location, I
had sent the first installment on an
article on the BIP Bios system (with
banked ZsDos and Command Proces
sor), but it apparently got lost in the
process. Would you still be interested?
If so, I will try to locate the sources if
you can still accept WordStar 4 text,
since that is aU I use on the 8-bitters
(WordStar 7 on the clones).

Keep up the good work.

Hal

Andfrom another ofHal's messages:

For sale, I have the Banked and Por
table (BIP) Bios which consists of
source for selected hardware platforms,
along with a large banked version of
ZSDOS (ZsDos2) which features Z
System style command line parsing,
and hashed directory capability for
speed, and a banked extension and
enhancement of ZCPR 3.4 which fea
tures many commands normally placed
in RCPs. Versions are available for:

MicroMint SB-180
MicroMint SB180FX
YASBEC
Ampro Little Board 100 (with

Terry Hazen's MDISK)

D-X Designs Pty Ltd P112

The price is $69.00 + $3.00 S&H.
Deliverables consist of a 150+ page
manual, and one or two disks depend
ing on the desired disk configuration
and version of the target computer.
Wherever possible, I try to provide
bootable disks, with pre-eonfigured
banked and non-banked images. Sup
port utilities are also provided to sup
port the new features such as a rather
extensive SCSI Hard drive diagnostic
(drives up to 1GB are handled), and
sample source for interfacing.

E-Mail: HalBower@msn.com

Address:
Harold F. Bower
7914 Redglobe Ct.
Severn;MD 21144-1048

Phone (no calls after lOPM Eastern
time, please)

(410) 551-5922

From: William Cook
<wcook@nni.com>

To: tcj@psyber.com
Subject: XT's

I stumbled across your news letter and
found it very infomative. I made it
required reading at my company for
new recruits. (We sell electronics) as
many would not remember the bad old
days ofcomputing. Do you have a page
that keeps updating, if so let me know,
I'd like to read more of your work.

The article in ref was on XT's.

Thanks, Bill Cook

And, thank you, Bill. I'm trying to
figure out how to make TCJ required
reading everywhere.

Hi Dave,

This is Ian Blythe, I have received the
trial issue of TCJ, and I will be send
ing you a subscription as soon as I can
resolve my financial situation (4/5ths
of my immediate family have birth-
days in May/June and the clutch is
slipping in my car :(

I'd like to take advantage of the dis
count on ordering backnumbers with a
subscription. I am particularly inter
ested in the IDE articles, I would like
to build an IDE interface for my home
brew 6809 system. I know that the
GillE stuff is for the Z80, but if any of
the previous issues covered IDE in a
more general way (ie an interface guide
for _any_ MPU) I would appreciate it
if you could point me in the right di
rection.

I would be happy to write an article for
TCJ, something on the lines of: Stu
dent days, no money, lots of SS50 stuff
and S100, want a computer, no money
(still) so build it yourself, more inter
esting and fun!

"Find application note by Motorola on
6883 SAM, add in a 6522 VIA and
6551, pop in a 20LlO PAL to run the
clock and decoding, page in 4
EPROMs, and 64K DRAM and you've
got a standalone 6809 computer. Type
in Assist09 and modify it to suit, fmd
stuff for Flex OS, put in an FDC con
troller, put Flex bootup into EPROM,
and modify assist09. Type FLEX and
the system boots into a full 64K
DRAM disk system. Build in paged
expansion bus, plan EPROM program
mer, RAM disk, CRT interface, but
then get ajob, bought a motorbike, got
a family, sold the bike and bought a
car, built an IBM PC clone...changed
country and 20 years later I come back
to my Flex system."

Would this be of interest?

best regards,

Ian

Senior Technical Writer,
SGS-THOMSON Microelectronics

If it's DIY with source code and sche
matics, TCJ is interested.

The Computer Journal / #79

PC/XT Comer
By Frank Sergeant

Among other things, I maintain a medical accounting
package written in Clipper. The first major development
work I did on it was to add electronic claims handling. This
involved controlling serial ports and modems on IBM PC
clones, usually'486 or Pentium-based. This article discusses
how I handle the serial port from Pygmy Forth.

Application Summary

I wrote the data collection and extraction routines for
the electronic claims in Clipper, a dBASE-like, C-like lan
guage. I used Clipper for this because the rest of the appli
cation was written in Clipper. But, since Clipper can shell
to DOS to run external programs, I took advantage ofthis to
write the transmit module completely in Forth.

When it is time to send claims to the clearing house, the
Clipper program extracts the data and writes it to a text file,
then runs TRANSMIT.COM. TRANSMIT.COM is a ver
sion ofPygmy Forth in disguise. The Clipper program passes
the file name and phone number to Pygmy. Pygmy dials the
phone, transmits the file to the clearing house record by
record, captures the returned report, hangs up the phone,
and returns control to the Clipper program.

Why Use Forth'!

For me, the real question is why continue to use Clip
per? The answers to that are inertia and fear. I would pre
fer the application be entirely in Forth. Unfortunately, when
I took over the application, it was a monster. I have been
afraid of losing too many "business rules" which are cap
tured in the current application, but not documented clearly.
I suppose it might have been (and might now be) better to
do a complete rewrite in Forth. Since my income from this
project doesn't seem to justify such an effort, I'll limp along
with Clipper for now, gradually cleaning up the code as I
go, and look for independent modules that can be turned
over to Forth.

In hindsight, I am very pleased to have used Forth for
this module. One of Forth's strong points is the speed of
testing. This is due to the direct, straight forward, interac
tive access to the machine that Forth provides plus the small
resource requirements of Forth. In Forth, I can test some
thing quickly from the keyboard and then poke around in
memory if I need to examine something. A recompile of
one or three blocks ofForth source takes a second or so. A
small recompile and link for Clipper takes perhaps 30 to 50
times as long. By that time, I might have lost my train of

The Computer Journal / #79

thought. Since I decoupled the Forth module from Clipper
by having Forth transmit a text file that Clipper had previ
ously created, I could make the Clipper program create the
file once, then bring up Forth and stay in Forth while test
ing, without needing to run the Clipper program each time.

The PC Serial Port

Fortunately, the basic serial port is fairly standard be
tween all versions of IBM PCs. There is a high-level of
compatibility from the oldest PC/XT to the newest Pentium
based machine. The original serial chip was the 8250. Sub
sequent serial port chips tend to look exactly like an 8250
except they often have additional capabilities which old soft
ware simply ignores. The major enhancement over the origi
nal8250 is the addition ofa FIFO. This on-ehip FIFO (first
in, first out) is a buffer for storing incoming serial charac
ters. This reduces the chance of losing characters if the
software is tied up when a new character arrives. If the
FIFO is not turned on, the newer serial chips behave as if
they were original 8250s. Some of the older enhanced chips
have unreliable FIFOs which should not be turned on. I'll
show the code for turning the FIFOs on and off and for de
termining whether to trust the FIFO.

The serial chip is controlled by writing bit patterns to its
various control registers and reading its status registers. In
particular, the status registers indicate when an incoming
serial character is available and when the transmitter is ready
to accept a character to transmit.

Modems versus Serial Ports

The modem is connected to a serial port. The program
talks to the modem via the serial port. (The modem, of
course, talks to another modem via the telephone line.) Some
PC modems are "external." They sit in a box connected to
the PC via a serial cable. Other modems are "internal."
These are on a card plugged into the PC's motherboard.
These cards have built-in serial ports. Either way, to talk to
the modem, the program must control a serial port.

Interrupts

The serial chip could be handled by polling, without
requiring the use of any interrupts. Software to do this stays
in a loop reading a status register on the serial chip to deter
mine when a new incoming character is available or when it
is ok to write a new outgoing character to the serial port.

5

6

This can be a very workable method in some situations. The
problem is that often other things must be done by the soft
ware; it can't spend all its time checking on the serial port.
Interrupts help solve this problem by allowing the software
to do its other work until the serial port needs attention.
Then, the serial chip interrupts the CPU and invokes a spe
cial interrupt handler (software routine) that "services" the
serial port. You tell the serial port which events, if any,
should cause an interrupt by writing bit patterns to a control
register in the serial chip.

I usually set the serial port to generate an interrupt only
when an incoming character is ready. When transmitting a
character, the software polls the serial chip until the chip is
ready to accept the character. In chips without a FIFO, if a
second character is received before you read the current one,
the second character overwrites the current character. The
whole point of using an interrupt on serial input is to pre
vent the loss of incoming data that might occur if too many
bytes arrive at the serial chip before your software can read
them all (because your software is busy elsewhere). FIFOs
also help prevent lost data because the FIFO b~er can hold
a number ofcharacters (such as 16) before losing any. You
can tell the serial chip, for example, to generate an interrupt
whenever the FIFO is half full. It also generates an inter
rupt when one or more characters are ready but no new char
acters have been recieved for four character periods. The
FIFO has the added advantage of reducing the overhead due
to the interrupt. It is more efficient to read 8 or 10 charac
ters per interrupt than to read a single character per inter
rupt. I set the interrupt point at half full (8 characters) so
there is still a bit of room in the FIFO if more characters
come in while responding to the interrupt. Before return
ing, the interrupt routine "drains" the FIFO of all the char
acters that are available.

Quick In and Out

The interrupt handler should run as quickly possible.
At 9600 bps (bits per second), a new character arrives ap
proximately every millisecond (1,000,000 microseconds/sec
divided by 960 bytes/sec = 1042 microseconds per byte. I
divide by 960 because there are typically 10 bits per charac
ter: a start bit, 8 data bits, and a stop bit, thus 9600 bits per
second is 960 bytes per second.) Imagine the pickle you'd
be in ifyour interrupt handler took longer than 1042 micro
seconds to handle each character. Well, the problem is worse
than that. Other events going on in the PC generate inter
rupts which require handling. It spells trouble ifany ofthose
interrupt routines are real CPU hogs. So, get in quick, do
the minimum work you must inside the handler, then get
out. Any processing that isn't time critical should be done
outside of the interrupt routine.

FAQlI

Various FAQs (Frequently Asked Questions documents)
are available on the internet describing the hardware and
software aspects of PC serial ports and modems. See Chris
Blum's ftp:/lftp.phil.uni-sb.de/pub/peopte/chrisIThe_Serial_Port and
John Navas's http://web.aimnet.coml~jnavaslmodemlfaq.html.

Another good source is a data sheet on the serial chip. Since
the newer chips are backward compatible with the older

chips, a data sheet for almost any 8250 or 16550 chip will
be useful.

I found the Chris Blum FAQ very interesting. He gives
the details about how to test whether the FIFO is reliable,
etc. Apparently the interrupt handling can be tricky. He
offers what he considers a bullet-proof method of handling
the interrupts and that is what I based my code on.

The Serial Port Code

See the listings for the source and shadow blocks. I'll
leave it to the shadow blocks for most of the documentation
and just discuss some of the more interesting details.

The word SER - IN? is analogous to KEY? in that it tells
whether a character is available from the serial port. Rather
than just returning a true or false flag, SER - IN? returns a
count of how many characters are available. If you care
about the exact count, you've got it. Otherwise, just use the
result as a true or false flag.

The word SER- I N is analagous to KEY. It returns the
next available character from the serial port. It doesn't read
the serial port directly. That is done by the interrupt han
dler. SER- IN reads the SERIAL queue into which the inter
rupt handler has stuffed incoming characters.

SER - IN calls SER - IN? in a loop until at least one char
acter is available. Then it removes that character from the
SERIAL queue and returns it on the stack. The loop is not
necessarily an endless loop. If no character is available,
SER - IN will time out eventually with an error message. To
avoid a possible time out, always call SER - IN? first to make
sure a character is available.

SERIAL is the name of the queue where the incoming
serial characters are stuffed by the interrupt handler. SERIAL
is created by the word BYTEa: and must have a length that
is a power of 2, such as 512 or 4096.

Serial Port Registers

The serial port registers are accessed by the 80x86 CPU's
input and output instructions. 'SDATA holds the address of
the serial port's base VO address. All the register addresses
are relative to that base I/O address. 'SDATA must be set
properly for the serial port you want to use. The word COM
takes care of this by reading the BIOS data area to fmd the
proper I/O base address. Saying 1 COM or 2 COM sets
'SDATA and some related variables to the correct values for
the serial port you have specified. COM makes some assump
tions as to the interrupt number and level. Normally COMI:
uses interrupt 12 and IRQ level 4, while COM2: uses inter
rupt 11 and IRQ level 3. If that should not be the case with
your hardware, after running COM you can store different
values into SINT# and sIRa, to handle special cases.

After typing 1 COM or 2 COM you can type . STA to
show the status of the various registers.

PIC

The PIC (programmable interrupt controller) chip is also
heavily involved in hardware interrupts. Its two registers
PIC_CTRL and PIC_MASK are defined on the same block

The Computer Journal/ #79

as the serial port registers. The PIC_MASK controls which
IRQ (interrupt) levels are allowed to be active. The serial
port usually uses IRQ level 4 or 3. The word IRQ_MASK
produces the proper mask byte for use within ENABLE_PIC
and 0I SABLE_P I Cfor enabling or disabling the chosen serial
port. The words PORT -ON and PORT -OFF turn on or off
specified bits without affecting the other bits. This makes it
easy to selectively disable, say, IRQ4 (for serial port #1)
without disturbing the interrupts in use by the rest of the
system.

After an interrupt occurs, you must write an "end of
interrupt" value to PIC_CTRL to reset the PIC to allow it to
handle future interrupts.

Initializing the Serial Port

Now that COM can determine the base address and IRQ
level and now that names exist for the various serial port
registers, the serial port can be initialized to the chosen bit
rate, parity, etc. See BPS, DATABITS, FIFO -ON, FIFO -OFF,
and NO-PARITY. Here is an example of initializing the
serial port:

1 COM 9600 BPS 8 DATABITS NO-PARITY FIFO-ON

Note that 115200 BPS is especially interesting on a 16-bit
Forth because 115200 is too big for the l6-bit data stack.
BPS handles this special case by noting that when you try to
put decimal 115200 on the 16-bit data stack, the value be
comes 49664 (because 115200 mod 65536 is 49664).

Defining the Interrupt Handler

There are at least three ways to define the serial inter
rupt handler code.

(1) Define a handler hard-coded for each serial port base
address and IRQ level combination, then pick the right one
to install into the interrupt vector table. This is fast at run
time but somewhat inconvenient, since you don't usually
know which serial port will be used at the time the handler
is defined.

(2) Define a general purpose handler that reads the val
ues of the 'SDATA, SINH, and SIRQN variables each time
it runs so it will know how to address the proper serial port.
This is flexible, but adds a run-time penalty which slows
down the interrupt handler.

(3) Use a macro to define a custom hard-coded handler.
The macro itself uses the' SDATA, SINT#, and SIRQN vari
ables as it defines the hard-eoded handler. Thereafter, when
the handler runs, no time needs to be spent checking those
variables.

I took the third approach in this project. The word
HANDLER, is the assembly language macro that lays down
the proper machine code. It is run only after 1 COM or 2 COM
has selected the serial port. To keep HANDLER, to a moder
ate size, it invokes sub-macros such as DISABLE PIC"
EOI" STI " and DRAIN,. (Note that I usually put a comma
as the final character of the name of an assembly language
macro to indicate that it commas code into the dictionary.)

The word BUILD -HANDLER passes a string to EVALUATE
to compile the CODE word SERIAL-HANDLER at run-time.

The Computer Journal / #79

The point of putting this off until run-time is to delay its
compilation until the serial port to be used is known and so
can be hard-coded into the serial interrupt handler. If
SER IAL - HANDLER were defined earlier, it would need vari
ous tests or variable accesses which would slow it down.

Installing the Interrupt Handler

After the interrupt handler has been defined, it must be
installed into the interrupt vector table, the serial chip must
be initialized to generate an interrupt at the proper time
(when an incoming character is available), and the PIC must
be initialized to pass this interrupt on to the CPU. The word
INSTALL-SINT does this. The related word UNINSTALL
SINT disables the serial interrupt and restores the original
vector in the interrupt table.

INT-VECTORt'I and INT-VECTORI call DOS to fetch
or store to the interrupt vector table. START puts it all to
gether to specify a serial port and build and install the inter
rupt handler. The example in the code is for serial port 2
and 9600 bps. Change it according to your needs.

Testing it with DUMB

The word DUMB provides a dumb terminal for testing
the serial port and modem. It is a loop that does two things.
Whenever a character comes in on the serial port, DUMB
displays that character on the screen. Whenever a key is
pressed, DUMB sends that character to the serial port. The
exception is the Esc key. This terminates DUMB and returns
to Forth.

To try it out, modifY START to suit your hardware and
load the code and type DUMB. The simplest test of the mo
dem is to type AT followed by the enter key while in the
dumb terminal. If the modem is listening, it will respond
with OK. Once you are talking to the modem, you can try
fancier AT commands to turn the modem speaker on or off,
to dial a number, etc.

Note, DUMB makes a very dumb terminal. For real use
as a terminal program, you need to modifY it to handle vari
ous terminal control codes. See DUMB2 for an improvement
that drops incoming line feed characters and converts in
coming carriage return characters to a carriage return/line
feed pair.

Summary

These serial port words hide the nasty hardware details
and provide convenient access to the serial port and mo
dem. This approach works for applications written entirely
in Forth and also for mixed language applications where
Forth is called upon to do the low-level work.

Source Code Listing

The next three pages contain the source code in a modified
format to fit in the magazine. Shadow is in the left column
and source is in the right. The code is available in standard
format as BLOCKS79.ZIP on the TCJ Web page and on the
TCJIDIBs BBS.

7

«SHADOW SOURCE»

serial port variables) (serial port variables

SPORTil

SI RQil

SINUl

'SDATA

active serial port number

hardware interrupt line used for
active serial port

equivalent software int number

base I/O address for the port
(e.g. $03F8 for coml)

VARIABLE SPORTf!
(1 or 2 for coml or com2)

VARI ABLE SIRQII
(usually I RQ4 for coml, IRQ3 for com2)

VARIABLE SINTf/
(usually 12 for coml or 11 for com2)

VARIABLE 'SDATA
(usually $03F8 for coml)

(Serial
DATA
IER
DIV-LSB
DIV-MSB
IIR
LCR

MCR
LSR
MSR
FCR

port & PIC registers)
serial data register
interrupt enable register
least significant byte, baud rate divisor
most significant byte, baud rate divisor
interrupt id register
line control register, its bit 7 chooses

whether divisor or data is addressed
modem control register
line status register
modem status register
fifo control register

Serial port & PIC registers)

DATA port) 'SDATA @
IER - port) 'SOATA @ 1+
DIV-LSB port) DATA
DIV-MSB port) IER
I IR port) 'SDATA @ 2 +
LCR port) 'SDATA @ 3 +
MCR port) 'SDATA @ 4 +
LSR port) 'SDATA @ 5 +
MSR port) 'SDATA @ 6 +
FCR port) I IR

PIC_CTRL programmable interrupt controller
PIC_MASK registers

(select a serial port and create the queue)

COM fetches the base I/O address from the BIOS
data area, makes a reasonable guess as to
the proper interrupt to use, and sets up
the serial port variables. E.g.

1 COM to select COMl: or
2 COM to select COM2:

SERIAL is the name of a 4096 byte queue. Note,
the length must be a power of two, or
the cheap mod mask trick will not work.

Serial input)

RESET-SER-IN empties the SERIAL queue
SER-IN? returns true if at least one

character is waiting

TIMEOUT error handling if SER-IN can't
retrieve a character

$0020 CONSTANT PIC CTRL
$0021 CONSTANT PIC=MASK

select a serial port and create the queue)

COM (portfl -)
1 4 CLAMP (portf!)
OUP SPORTf!! 11 OVER 1 AND + SINTf!

3 OVER 1 AND + SIRQf!
$40 SWAP 1- 2* L@ 'SDATA

Seri ali nput)
RESET-SER-IN (-) SERIAL QRESET
SER-IN? (- f!items_waiting) SERIAL Q?

DEFER TIMEOUT
(TIMEOUT (-)
-1 ABORT- timeout in SER-IN •
(TIMEOUT IS TIMEOUT

SER-IN (- c)
10000 FOR SER-IN?

IF POP DROP SERIAL Q@ EXIT THEN
NEXT TIMEOUT

define the queue)
pick the serial port)

4096 BYTEQ: SERIAL
2 COM

fetch a byte from the SERIAL queue.
Wait a little while, if necessary,
but don't hang forever.

SER-IN

(Serial output >SERIAL)
SER-OUT write a byte directly to the serial port

hardware, but wait until the transmit data
register is empty. Don't wait forever, though.

>SERIAL point the main Forth input and output
words to the serial port. Note >SERIAL is
currently defined to revector only EMIT. See
the alternative below EXIT which also revectors
KEY? and KEY. The point of revectoring to the
serial port is to allow all the usual I/O words
(EMIT TYPE U.R etc) and the words that call them
to work unchanged with the serial port.

Set baud rate)

>DIVISOR choose divisior registers
>DATA choose data register

DIV@ fetch 16-bit divisor
DIVl store 16-bit divisor to establish baud rate

Serial output >SERIAL
SER-OUT (c -)
10000 FOR LSR PC@ $20 AND

(transmitter holding reg empty?)
IF (c) DATA PC! POP DROP EXIT THEN

NEXT (c) DROP.- timeout in SER-OUT

: >SERIAL (-) ['J SER-OUT IS EMIT
EXIT >SERIAL (-)

['J SER-IN? IS KEY?
['J SER-IN IS KEY
['J SER-OUT IS EMIT

Set baud rate)

>DIVISOR (-) LCR $80 PORT-ON
>DATA (-) LCR $80 PORT-OFF

DIV@ (- u)
>DIVISOR DIV-LSB PC@ DIV-MSB PC@ $100 * +
>DATA

8 The Computer Journal / #79

«SHADOW SOURCE»

BPS calculate &set divisor for given baud rate
(bits per second). It works for 110 300 600
1200 4800 9600 19200 38400 57600 and 115200.
Note special trick for 115200 since 115200
won't fit in a 16-bit number.

eg 1200 BPS 57600 BPS 115200 BPS

DIV! (u -) >DIVISOR
DUP $100 UI DIV-MSB PC! $FF AND DIV-LSB PC!
>DATA ;

BPS (bps -) DUP 49664 - IF 49664 1 ROT UMIMOD
ELSE 1 (115,200) THEN DIV! (U.) DROP

DATABITS (Hbits -)
LCR 3 PORT-OFF

Set databits and parity)
FIFO-OFF (-) 0 FCR PC! ;
FIFO-ON (-) $87 FCR PC! NOP
IIR PC@ $CO AND $CO - IF (bad) FIFO-OFF THEN

NO-PARITY -)
ODD-PARITY -)

: EVEN-PARITY -)
EX IT

MARK-PARITY -)
SPACE-PARITY -)

(Set databits and parity)

Bits 1.0 of the Line Canto I Register control the
number of data bits (5. 6. 7. or 8).

Bits 5.4,3 of the Line Control Register determine
the parity. First we clear all 3 bits. then we
set the proper ones for the requested parity.
E.g. 8 DATABITS NO-PARITY

7 DATABITS EVEN-PARITY

$87 to the FCR turns on the fifo and clears the
tx & rx buffers and sets the trigger point to
8 characters. ($07 sets the trigger point to
1 character.)

PARITY! mask -)

5 8 CLAMP 5
LCR SWAP PORT-ON

LCR $38 PORT-OFF
LCR SWAP PORT-ON
o PARITY!

$08 PARITY!
$18 PARITY!

$28 PARITY!
$38 PARITY!

disable irqfl) ;

(8259 interrupt controller 1/0 port addresses)

IRQ_MASK the hardware interrupt we want to
enable for the chosen serial port

EOI send "end of interrupt" message to PIC

ENABLE_PIC the cleared bits in PIC_MASK register
indicate which interrupts will be
passed to the CPU

DISABLE_PIC the set bits indicate which will not
be passed to the CPU

8259 interrupt controller)

IRQ_MASK (- mask)
1 SIRQH @ FOR 2* NEXT ;
(above provides the OR mask; it must

be inverted for ANDing)

EOI (-) $20 PIC_CTRL PC!
(send end-of-interrupt)

ENABLLPIC (-)
PIC_MASK IRQ_MASK PORT-OFF enable irqH) ;

DISABLLPIC (-)
PIC_MASK IRQ_MASK PORT-ON

Serial port control lines)

DTR
RTS
OUT2
+DTR
-DTR
+RTS
-RTS
+OUT2
-OUT2

(Serial port control lines)

+DTR turn on the DTR line
(i .e. make it about +9 volts).

-DTR turn off the DTR line
(i .e. make it about -9 volts).

Similar words control the RTS and OUT2 lines

- port bit) MCR (ie
- port bit) MCR (ie

(- port bit) MCR (ie
(-) DTR (port bit)
(-) DTR (port bit)
(-) RTS (port bit)
(-) RTS (port bit)
(-) OUT2 (port bit)
(-) OUT2 (port bit)

port) 1
port) 2
port) 8
PORT-ON
PORT-OFF
PORT-ON
PORT-OFF

PORT-ON
PORT-OFF

(Macros for building an interrupt handler)

These macros are used to build a serial interrupt
handler _after_ the serial port is set up
(e.g. 2 COM). Then, at run time of the handler.
we won·t need to access variables to find the
port addresses. etc. Instead. they will be
hard-coded into the interrupt handler. Thus.
the variables must be set up before the macro
executes.

EOl.
ENABLE_PIC.

DISABLLPIC.

send "end of interrupt" to the PIC
unmasks the correct serial irq line
masks the correct serial irq line

LOOPBACK (-) MCR $10 PORT-ON
NOLOOPBACK (-) MCR $10 PORT-OFF

Macros for building an interrupt handler)

EO r. (-)
$20 fl. AL MOV, PICCTRL fl. AL OUT.

ENABLLPIC. (-)
PIC_MASK fl. AL IN.
IRQ_MASK $FF XOR H. AL AND.
PIC_MASK H. AL OUT.

DISABLE_PIC. (-)
PIC MASK H. AL IN.
IRQ=MASK H. AL OR.
PIC_MASK H. AL OUT.

ORA IN.
while character(s) are waiting. read them and
stuff them into the proper serial queue.

The Computer Journal / #79

Macros for building an interrupt handler)
ORA IN. (-)
BEGIN. LSR fl. OX MOV. AL IN. 1 fl. AL AND.
0=. NOT. WHILE.

DATA H. OX MOV. AL IN. (read input char)
SERIAL H. BX MOV. a [BX] CX MOV. (mask)
4 [BX] CX AND. (tail)
4 [BX] W-PTR INC. (incr tail)
CX BX ADD. (add tail to start of buffer)
AL 6 [BX] MOV. (store char into buffer)

REPEAT.

9

«SHADOW

(Macros for building an interrupt handler)

CLEAR-lID.
while bit 0 of IIR is zero. take the most
likely steps to clear the pending interrupt
flags. Note. this should not be necessary.
since we do not enable any ints except for
data received and reading the DATA port
should clear all the interrupt flags
associated with received data. However.
others have warned that this step is needed
because some of the other interrupt flags
still get set from time to time.

lay down all the code for the interrupt handler)

HANDLER.
This lays down the assembly code for the
interrupt handler. It must not be done until
after the 'SDATA SIRO# etc variables are set.
e.g. with 2 COM. as the macros need to know
port and interrupt values.

It goes through a rather elaborate procedure to
attempt to guarantee the irq line will never be
stuck on. See the Serial Port FAO for the
reasoning behind this. Probably the handler
does not need to be this elaborate if only a
single port is attached to the irq.

install serial interrupt routine)

OLD-SVECTOR
place to save old serial interrupt vector

INSTALL-SINT
save the old vector. install vector pointing to
our own handler. use IRO_MASK to clear the bit
in the 8259 chip to allow our hardware
interrupt. set certain of the serial port
output lines. tell the serial chip to interrupt
only on datain. clear any accidentally pending
interrupt. and make sure the SERIAL buffer is
empty.

uninstall serial interrupt routine)

UNINSTALL-SINT
disable the serial interrupt at the 8259 and
restore the saved vector (not that it would
do any good with the int disabled at the 8259)

SOURCE»

Macros for building an interrupt handler)

CLEAR-lID. (-)
BEGIN. IIR II. OX MOV. AL IN. 1 II. AL AND.
0=. WHILE.

MSR If. OX MOV. AL IN.
(in case delta flags caused the int)

LSR II. OX MOV. AL IN.
(in case OE etc caused the int)

DRAIN.
(in case data ready caused the int)

REPEAT.

lay down all the code for the interrupt handler)

HANDLER. (-)
OS PUSH. OX PUSH, CX PUSH.
BX PUSH. AX PUSH. (ie save the registers)
CS PUSH. OS POP.

(set OS in case int is called from DOS. etc.)
DISABLCPIC. EOI. STI,
DRAIN, CLEAR-lID. CLI. ENABLE_PIC.
AX POP. BX POP,
CX POP. OX POP. OS POP. (ie restore registers)
I RET. ;

(install serial interrupt routine

VARIABLE OLD-SVECTOR 2 ALLOT
o 0 OLD-SVECTOR 2!

INSTALL-SINT (a -)
INTS-OFF +DTR 10 MS -DTR 10 MS +DTR
200 MS SINT# @ INT-VECTOR@ OLD-SVECTDR 2!
CS@ SWAP SINT# @
(seg offset int#) INT-VECTOR! ENABLE_PIC
$OB MCR PC! (set DTR. RTS. & OUT2 high)
1 IER PC! (enable only data-in int)
LSR PC@ MSR PC@ 2DROP DATA PC@ IIR PC@ 2DROP
EOI RESET-SER-IN INTS-ON

uninstall serial interrupt routine

UNINSTALL-SINT (-) OLD-SVECTOR 2@ OR
IF INTS-OFF DISABLE_PIC

OLD-SVECTOR 2@ SINT# @ INT-VECTOR!
o 0 OLD-SVECTOR 2l INTS-ON

ELSE CR ." Nothing to uninstall! • CR THEN
(might also need to drop DTR or

RTS in some cases)

Create and install interrupt handler)

BUILD-HANDLER (-)
• CODE SERIAL-HANDLER HANDLER. END-CODE

• SERIAL-HANDLER INSTALL-SINT • (a)
COUNT (a II) EVALUATE

DUMB termi na 1)

DUMB (-) (abort by press i ng ESC key) CR
BEGIN

SER-IN?
IF SER-IN EMIT THEN

KEY?
IF KEY DUP 27 =

IF DROP CR ." now in Pygmy· CR EXIT
ELSE SER-OUT
THEN

THEN
AGAIN

(Create and install interrupt handler)

BUILD-HANDLER
This is used to define the serial interrupt
handler code at run-time. It must not be done
until the com port has been established. It
builds a custom handler for the specific com
port that is active when BUILD-HANDLER is
executed.

START
Establish the correct com port and define and
install an interrupt handler for it.

DUMB terminal)

DUMB
example of using the serial routines to make a
dumb terminal. It prints to the screen any
characters that come in on the serial port.
It sends to the serial port any keys pressed
on the keyboard. Except. pressing the Esc
key stops DUMB.

START (-)
2 COM FIFO-ON 9600 BPS BUILD-HANDLER

10 The Computer Journal / #79

Program This!
The AT Modem Commands

By David Goodenough

AT +M8=11,1,300,28800 848=7 836=4

Huh?

The AT command set for modems can be a rather daunting
challenge, when you're trying to set up your new modem
with a communication package. Many good programs will
come with lists of init strings for all the various known
modems, i.e. these are AT commands that set up your
particular modem for the application in question.

What exactly goes into one of these AT commands?

The first thing to do is cover why they're even called AT
commands in the first place. This is because they invariably
start with the two letters 'A' and 'T'. The reason for these
two is shrouded in antiquity, but is as valid today as it ever
was. It is possible to communicate with your modem at
many different speeds (BPS rates). There is a certain amount
of smarts in the modem, and when it is waiting for a
command, it doesn't actually know if you're going to send
one at 2400 BPS, 19200 BPS or 57600 BPS, or any other
speed for that matter. So, it watches the serial line, and
when it sees the'A', it analyses the bit pattern, and is thus
able to determine the BPS rate. In the good old days of
parity, it would then also scan the 'T', and by looking at
what it had received for both letters, it could determine the
parity in use, if any.

Thus, by the time AT has been typed, the modem is awake,
and knows what speed the rest of the command will be
coming at. It will then remain in this mode, until it sees a
carriage return (Hex Od), at which point it will try to
execute the command.

The AT is also a mnemonic, in that it gets the modem's
ATtention, and this is the simple explanation that is given
in most documentation, since it covers things very nicely
and simply.

Following the AT can come all sorts of commands. There
are quite a few that are common to just about all modems,
I'll cover these first. Also note that I've placed spaces in
these commands for readability. The commands are always
designed in such a way that they can be crunched together
with no spaces. A single command that requires multiple
letters (e.g. AT &WO) should not have the &WO split up,
however you can place spaces before the & and after the 0
with no ill effects.

The Computer Journal #79

AT Z: one of the most commonly used commands, this
resets the modem to a stored profile. There are often two
extensions to this: AT ZO and AT ZI, which can select from
one of two stored profiles, with the addition that it is
sometimes possible to arrange it so that an AT Z will use
either of the two profiles as it's default. AT &F is fre
quently used to 'restore' the factory defaults which is the
initial profile set up by the manufacturer.

After the AT Z has completed the modem responds with
either OK, or the single digit '0'. This response means that
the modem executed the command correctly, about the only
other response that will be seen for most commands is
ERROR (or '4'), meaning the modem couldn't make sense
of what you asked. AT Z4 will typically elicit an ERROR
response, since the only valid numbers that can be used with
the AT Z command are 0 and 1.

The usual state for modems is to echo commands, i.e. the
modem sends back what you typed at it, which means to get
to see what you typed. This can be disabled with AT EO
(echo off), and enabled with AT El (echo on). Whether you
get and OK or a 0 is determined by the AT V setting: AT
VI (verbose on) gives full words, while AT VO (verbose off)
gives just the numbers. Finally, the responses can be com
pletely disabled with the AT Q command: AT QO (quiet off,
i.e. send responses) is the default, AT Q1 (quiet on) silences
the modem. This means that AT QI EO will completely
silence a modem: you'll see no echo ofyour commands, and
the modem won't respond.

AT &W, AT &WO, AT &Wl: these place the current
modem setup into one of the stored profiles that can be used
with AT Z; while AT & YO and AT & Yl select which of the
profiles will be used for the default AT Z. Note that the & W
and &Y commands are common to most modern modems,
but are not always to be found with older modems.

Finally most modems use AT & V to show the current
settings, as well as the stored profiles, although I have come
across one modem that used an AT In command to do the
same thing.

While on the subject, AT 10 thru AT I<whatever> are often
provided to allow the modem to be identified. The output
from these commands, and the number of them that exist
tends to be a bit variable, for example on the Cardinal MVP
288 XF that 1 own, AT 13,14, and 16 are perhaps the most
useful, showing the firmware revision, identifier string, and

11

data pump revision respectively. The firmware revision is
important, since it is possibly to upgrade this modem via its
flash ROM.

So far, we can reset the modem, and figure out what sort of
modem it is. However, what about doing something useful,
like actually dialing.

AT D •..

is the dial command, this is universal across all modems
that support the AT command set. In it's simplest case, just
follow the AT D with the number:

AT D5551212

and the modem will go off hook, dial the number, and try
to establish a connection. It will come back with one of
several responses, depending on what happened. The four
most common are:

BUSY - it detected a busy signal;

NO DIALTONE - it didn't hear dialtone when it went
off hook;

NO CARRIER - it dialed correctly, but didn't make a
connection to another modem;

CONNECT nnn - it got through, and established a
connection at nnn BPS.

Further up, I commented that single commands should not
have any spaces in them, the D command is the one excep
tion to this. It allows additional punctuation to be added,
which is silently ignored. This is most likely done for the
sake of readability:

AT D 1 (510) 555-1212

is a little more readable than:

AT DI5105551212

There are a couple of common sub-commands to the D
command. Putting in a T or a P will make the modem use
tone or pulse dialing respectively, and a comma ',' can be
used for a delay, this delay is usually two seconds per
comma. This might be used when you're using a phone
system where you have to dial 9 to get an outside line:

AT DT 9, 555-1212

will dial 9 to get the outside line, wait 2 seconds, and then
dial the remainder of the number. Likewise:

AT DT 0 (510) 555-1212,,(408) 555-1212 1234

Dials a number with a leading 0, which means this is a
calling card call. It then waits two comma's worth (four
seconds) for the calling card tone to sound, and then dials
the card number.

12

Lastly, using just an L as the dial command will cause the
modem to dial the last number again:

AT D L

It is worth noting that my Cardinal has quite an extensive
collection in addition to the four enumerated above, for
instance W will wait for dial tone again, while & waits for
the 'AT&T "Bong" tone' [sic] i.e. the calling card tone.
This means that dialing a calling card call from an inside
line could be done as:

AT D 9 W 0 (510) 555-1212 & (408) 555-1212 1234

A final pair of command that go hand in hand with the D
command are AT M and AT L. AT MO and AT MI disable
and enable the modem's speaker respectively, providing the
option to listen to the call in progress or not. Use AT MO
if you want to remain friends with everyone in the dorm.
When AT M1 has the speaker on, AT L sets the volume: AT
LO is quietest, thru AT L3 which is loudest.

Now that we've got online, what commands have an effect
now? There are a couple more that have an impact on the
call:

AT &Dn

and

AT &Cn

which modify the modem's treatment of the DTR line, and
how it outputs to the DCD line.

It is worth noting at this point that DTR gets its name from
the days when modems were directly connected to dumb
terminals. DTR means Data Terminal Ready, and is used to
allow the terminal to tell the modem that it's on line. The
two most useful variations of AT &D are AT &DO, which
causes the modem to completely ignore DTR, and AT &D2
which causes the modem to hangup and re-enter command
mode if DTR is made inactive. AT &D2 is useful, since
99.9% of communications programs deactivate DTR when
they exit, which means that you can't accidentally leave
yourself online after exiting your comm program, running
up a huge online bill.

Likewise, DCD stands for Data Carrier Detect, and is a
signal from the modem to the terminal that it is connected
to another modem. AT &CI is the most common setting,
this causes the modem to make DCD actually reflect the
state of carrier, so that your comm program can monitor the
line, and determine if you're connected or not. AT &CO
causes the modem to keep DCD permanently active, this
might be used if the comm program can't work at all unless
it sees DCD.

Returning to the AT &D command for a moment, the
question needs asking "how do I hang up if the modem
doesn't respond to DTR?" The mechanism to allow this is
quite clever. While online, if the modem detects a delay of
I second, followed by three '+' characters, followed by

The Computer Journal #79

another delay of 1 second, it will return to command mode,
but it also stays online. At this point, the AT HO command
will cause it to hang up. AT HO has a counterpart: AT HI,
which causes the modem to go off hook, and then return to
command mode. About the only use for this might be to
busy out the phone line if the modem wants to perform a
long set of initialisation commands, and it doesn't want a
call arriving in the middle of them.

The net result of all this is that if your comm program
delays for one second, sends three '+' characters, delays for
another second, and then sends AT HO, it will make the
modem terminate the call, and go on hook.

The last major area that needs covering are the modem "s"
registers. These are numeric values that can be set to alter
the behaviour of the modem.

The general syntax is:

AT 8r=v

where r is the register number, and v is the value to place
in it. It is also possible to inspect them by using the:

AT Sr? command.

There are a number of these that are common across just
about all modems, I'll cover these. However take note that
there are also many of these that vary based on the modem
manufacturer, you'll need to consult your modem's docu
mentation to get details of them.

80 is the number of rings to wait before answering. If this
is set to 0, auto answer is disabled.

Sl is a read only register (i.e. you can't set it with AT SI =v),
and reports the number of rings seen so far. When S1
becomes equal to SO, the modem answers the phone.

82 is the "escape" character, entered as a decimal number.
I noted above that a delay, three '+'s and a delay return to
command mode - S2 lets you change the '+' character. The
default is 43, which encodes a '+' character, but it could
easily be changed to 45 for a '.' character, or 63 for an '=',
or whatever else.

83 is the command termination character in decimal. The
default is 13, meaning use a carriage return.

84 is the line separator character, this is output along with
the command termination character to separate lines of
output from the modem. Default is 10, for a line feed.

85 is the delete character, i.e. the one you can use to erase
mistakes in the command. The default is 8, for backspace.

87 is the delay for carrier detect in seconds, this tells the
modem how long it should wait after dialing to try to
establish carrier with the other modem. With the advent of
the complex negotiation systems of high speed modems, it's
a good idea to give this a fairly high value. I use 60
seconds, to give it a whole minute to place the call and

The Computer Journal #79

connect.

811 is the tone dial speed in milliseconds, Le. the duration
of the tones used to dial, as well as the gap between tones.
A safe value is 75, although this may work as low as 55, or
even 50.

This covers the most common commands. I have not dealt
with such things as data compression, error correction, flow
control and the likes, since these tend to vary between
modems. Check your documentation for details, although it
is worth noting that the default setup is often close to
optimal, and needs very little alteration.

13

WHEREIN

We continue the transmogrification of a basic luggable
computing box into an indispensable personal assistant.
Since all good personal assistants must be able to commu
nicate, we must, therefore, implant a communications de
vice (aka a modem). The goal is to use a standard RS-232
new/surplus/used 1200/2400/9600 baud external modem
and mount it semi-permanently internally in whatever fla
vor of Darth Vader's lunchbox you have.

THE CHALLENGE

then, for your sometimes errant Scribe, is to devise a
process that will work with whatever you happen to pick up
at the local swap/flea market or thrift store, or, heaven help
us, buy from your local retailer or mail-order house.

The challenge for you, is to pick and choose; first, the
hardware you're going to work with; and second, the par
ticular techniques and procedures from the plethora about
to be described, that will work for you.

THE BATTLE PLAN

The concept of what we're going to do is simple, take
a readily available external modem, strip off the box, physi
cally mount it somewhere, hook it up so that it doesn't
completely disable our serial port, AND do it easily and
elegantly. As some much more erudite WIZARD once said,
"the concept is a piece of cake, but, the devil is in the
details." TAKE HEART, however, when we did the origi
nal project, we used three different modems, an Everex
2400, a Hayes 2400, and a no-name turbo 9600, and it all
came out the same in most details. The real key, is to use
a modem that will work when connected to the serial port
in the conventional manner, with an external cable. If it
will work connected externally, then it will work when we
put it inside.

HOW WE GET AWAY WITH IT

We have to deal with two voltages; l20V ac,the power
supply; and +12V to -l2V, the RS-232 signals. I suppose
that a real purist would first do the PC-XT power supply
transplant (prior article) and use it to supply regulated +5V,
+I2V, and -12V directly to the proper places on the modem
circuit board, BUT, this project is designed so that even I,

14

Mr. Kaypro

by Charles B. Stafford

Joe Fumblethumbs, can do it with a minimum of fuss and
bother, and a reasonable chance of success. So, here's what
we're going to do: most modems use a "wall-wart" (plug-in
transformer for you new readers), or an inline transformer
to get from l20Vac down to somewhere around 8-9Vac and
then use a voltage doubler, as well as a bridge rectifier
circuit and regulators to get the correct voltages. This means
we can use the same trick we used to stabilize the display
with a small modification, a power switch, to put the wall
wart inside.

With the power taken care of, (don't worry, I know I
didn't give you any details, that comes later) all we have to
face is the RS-232 connection. What we are dealing with
here are the most common RS-232 drivers; the 1488, the
transmitter and the 1489, the receiver. Both the modem and
the Kaypro use them. The difficulty arises when we tie the
output of a 1488 (the modem's pin 3) to the input of a 1489
(the Kaypro's pin 3) AND the output of ANOTHER 1488
(the Serial port pin 3) is also present. The reason that this
presents achallenge, is that the output of a 1488 can either
look like ground or an open, powered or not, and is com
pletely unpredictable. The solution to this dilemma is as
elegant as it is sneaky. We just put a 6.8k resistor in series
with the 1488's output line (see Figure 1). If the other
1488's junction is trying to look like ground, this will make
it look like any other 6.8k impedance, and as a matter of
fact the rated input impedance ofa 1489 is; trumpets please;
3-7k ohms!!! The cur- rents involved are vary low so the
voltage drop as far as the signal is concerned is negligible,
but if we were using long transmission lines, this probably
wouldn't work. Again details later.

Construction

First the physical considerations; stripping and mount
ing the modem circuit board, locating and mounting a
power switch for the modem, and last but not least, install
ing the power.

Most external modems up to now have been made to be
repairable, that is to say, you can open the "box" and close
it again the way the manufacturer did with no damage.
Normally when this is done and the box disposed of, you are
left with a populated printed circuit board that has LEDs on
one end and connectors on the other. The most convenient
spot to mount it is on the side of the drive cage next to the
monitor, unless you've done the hard drive conversion,

The Computer Journal / #79

which uses this spot and then you're stuck with the second
easiest spot, the shield below the motherboard. In either
case, double stick foam pads, (the thick kind) will do the
job, or in the case of the side of the drive cage, standoffs can
be used, metal or plastic, provided you use flat head screws
inside the drive cage, so as not to interfere with the drives,
or "pop-rivet" 6-32 threaded inserts can be epoxied to the
side of the drive cage and used as standoffs. In order ofease
of installation the foam pads are first with the "pop-rivets
a close second, beause you can mount the inserts on the back
of the modem board, flange out, daub a little epoxy on the
flanges and stick it on the side of the drive cage, holding it
with masking tape until the epoxy is set (24 hours?). Prior
to mounting, however, (here comes the devil) you might
want to consider whether or not you want the the LEDs
exposed. You could drill individual holes in the front panel,
to "let the lights shine through" but most modem software
uses FYI (for your information) messages to tell you the
same information, and laying out all those holes could lead
to a gigantic headache. They were left concealed on the
prototype.

ACTION TIME

It's time, now to get out the screw-driver and remove
first the power plug from the outlet and then the ten screws
that hold the hood on, and then the hood. There are two
regular screws on the back and two fasteners for each serial
port and two for the parallel port. Remove all of these, the
connectors on the mother- board and the two screws at the
front of the mother-board, and then the mother-board it self.
Now, you're ready to mount the modem as described above.

120VAC

Two out of the three modems that were experimented
with for this project used wall-transformer power supplies,
but the third used an inline transformer. They can be handled
in similar fashions, using the same trick that was first used
to provide an independent 12V supply to the video board
with one exception, for this application a power switch is
needed. On the prototype a l20Vac rated miniature toggle
switch was mounted on the back panel by drilling a 114 inch
hole above the main power switch. Ifyou've already moved
the reset button, you could use its former location and avoid
drilling a new hole. In either case, it's time to find an old
but good extension cord that the wall transformer will plug
into and cut off the socket end with about a foot of wire.
Using automotive spade type crimp connectors (just like
Kaypro did) connect one side of that foot of wire to the
"NEUTRAL" side of the main power switch (white wire),
and the other to the "HOT' side of the main power switch
(black wire), after going through the new modem power
switch. Then plug in the wall transformer and mount it on
the bottom of the case using some of those double-stick
foam pads. An inline transformer can be mounted the same
way, but its ac line will have to be connected direct to the
"NEUTRAL" and "HOT" leads through the switch. You
can now switch power on and off to the modem, so on to:

The Signal Lines

On the modem circuit board somewhere there is a serial

The Computer Journal / #79

connector, either a DB-25 (the most common) or a DB-9 in
addition to the power connector and the modular telephone
connector(s). Since it would be nice to be able to replace the
modem easily, should the DRAGONs prevail and munch
the poor beast, use of the connector is dictated. Here you
must make a choice, you could use a solder-cup type con
nector and solder wires with resistors inline to the appropri
ate pins, or you could do it the way the prototype was done
using a "patch-box". A "patch-box" consists of male and
female connectors on opposite ends of asmall circuit board
enclosed in a plastic case. The circuit board has interrupted
traces between the connectors with solder pads at the breaks,
so that cross connections could be made to produce, for
instance, a null modem device or in this case putting resis
tors in-line with certain pins (see Figure 2). In fact, two
patch- boxes were used on the prototype, one connected to
the modem and one more, identical to the first, connected
to the serial port on the back of the machine.

The patch-boxes were configured so that pins 3, 5, and
8 have 6.8K ohm 1I8th watt resistors in-line and pins 1,2,
4, 7, and 20 have the jumpers supplied with the patch box
installed "straight through".

The next challenge is "how do we get from here to the
serial port (the data port on the '84 machines, the only
serial port on the '83 machines). The most elegant way
would be to etch a small circuit and use two wire wrap
sockets so that the 1488 and 1489, which are next to each
other could be removed the circuit board plugged in and a
cable routed down to the modem. Alternatively, a piece of
prototype board could be used with the same results. Both
of these solutions require, a fair amount of fuss, mess, and
bother, so here's a "quick & dirty" way to do it. RADIO
SHACK sells "Micro Test Clip Leads" which come in a
package of two, and consist ofa length of wire with a teensy
little test clip on each end, that once clipped on, hangs on
like a teenager to a telephone. It only takes seven to do the
job, remove one clip from each, strip the end 1I16th of an
inch and solder it into the appropriate solder cup of a
solder-cup type connector. Remember, pins I, 2, 3, 4, 5, 8,
and 20 are the ones to use, pins I, and 7 are both grounds
so you only need to use pin I. With an indelible pen mark
the pin numbers on the sides of the test clips.

Before re-assembly is started, there is one more detail,
(remember the devil?) to be attended to, the telephone
connector. There are several ways to handle this, including
just hanging a piece of telephone wire out through one of
the cooling slots at the back of the computer. The most
sanitary way is to procure a panel mount modular connector
and put another hole in the back panel, and use a short piece
of telephone line cord to connect it to the modem. A com
promise solution is to beglborrow/steallbuy a wall surface
mount telephone junction box (they're about 2 inches square
and about 7/8th of an inch high) and mount it on the back
panel on the outside so that the "line" side is over one of the
cooling slots, and run a short piece of line cord with a
modular connector on one end to the modem. Ifyou wish to
have a connection for a telephone as well, you could dupli
cate your preferred solution for connection to the telephone
socket on the modem, oe use a two into one splitter connec
tor (Radio Shack or your favorite hardware store).

15

NOW, it's time for re-assembly. Plug one of the patch
boxes onto the modem, and plug the modular telephone
connector(s) and the power connector into the appropriate
sockets. Plug the solder-cup type connector with all the
numbered leads and micro test clips hanging off of it onto
the patch box and route the leads either between the mother
board and the back panel or around the side of the mother
board, and re-install the mother-board, with a screw into
each standoff, two on the back panel, and the two fasteners
for each port.

know, the ones featured in the movie "Serial"). On Califor
nia Highway One, The Pacific Coast Highway, at the inter
section of the Francis Drake Highway, which goes out to
Point Reyes, there is a small roadside reataurant called The
Roadhouse, which serves an exquisite oyster chowder with
huge plump locally grown oysters. They have other food as
well as the best of the California wines, but if you are an
oyster fan, this place is not to be missed! The prices are
reasonable, too.

MATERIALS LIST
At this point, it is appropriate to recheck all connec

tions below the mother-board, making sure that you haven't
created any inadvertant shorts.

Here's where the identity of your machine becomes criti
cal. There are essentially three varieties of mother-boards,
the '83 K-IVIV, the '83 K-I0, and the '84 series. Identifi
cation is relatively easy, the '83 K-IIIIV has only one DB
25 Serial port, the '83 K-lO hard-drive cable (50 conductor
flat) connects in the center of the mother-board, and every
thing else is an '84 series machine. (Robies follow the ID
pattern, but you'll have to devise your own physical mount
ing scheme). Once you've identified your computer, pick
the corresponding connection data below and connect all
the micro test clips to the proper places. Care is essential,
because some of the signals you're working with are 12V
and if you get them connected to a 5V device, an IC could
be fatally injured by the DRAGON's bite.

Serial Port

SUPPLIER

your closet(?)
swap/flea market

HSC/JamecolLocal

ITEM

Your K-IIIIV/l0/2/4
a modem of your choice
2 Patch Boxes
6 6.8k ohm resistors
1 solder-cup type male DB-25 connector "
7 Micro Test-clip leads Radio Shack
4 standoffs/pop-rivet nuts HSC/JamecolLocal

K-llJIV '83 K-lO "84 Series
U Pin U Pin U Pin
ground at the power connector pin 4

68 3 17 3 4 11
69 1 4 1 5 10
68 11 17 6 4 8
69 13 4 4 5 4
69 10 4 13 5 13
68 8 17 8 4 6

Micro Test
Clip Pin
1
2
3
4
5
8

20

Recheck the connections and re-install the hood with
its ten screws, and it's time for checkout.

Figure 1

Software
Uk

Both MDM740 and MEX 114 were successfully tested
with the prototype installation. During the checkout they
werte both used in the "Terminal" mode by typing in "at"
and return. The modem should echo the characters "at"
back to the screen and reply "OK" after the return. This
assumes a Hayes compatable modem. For other cases, con
sult your modem manual. If all goes well up to this point,
plug in the telephone line and call a local bulletin board and
try a more extensive test. TCl's number, by the way, is
(916) 722-5799. _Box

_ 2,01-25 _Iorl:ilrtlr

Roadhouse

A small tip, not related to computers. IF you happen to
be traveling in Northern Califirnia, in Marin county, (that's
the one where all the Alternative Intelligences are, you Figure 2

16 The Computer Journal / #79

High Speed Modems
and CP/M

by Terry Hazen

Using 14.4k Modems with CP/M Modem Programs

If your CP/M system has a modem serial port capable of at
least 19.2k, you should be able to soup up your modem per
formance by upgrading your IMP or ZMP modem program
overlays and adding a 14.4k modem. If you don't have a
14.4k modem yet, remember that YOt'" get what you pay for.
Cheap ones don't always work'as advertised. The modem
control codes in the examples are for the US Robotics
Sportster or Courier 14.4k (or 28.8k) modems. Consult your
own modem manual for any differences.

IMP245 and ZMP15 are two standard CP/M modem pro
grams written at a time when 2400 baud was considered
high speed. Both programs and a wide selection of their
overlays are widely available on most CP/M BBS systems
as well as on the Walnut Creek CP/M CDROM. If you al
ready have an IMP245 or ZMP15 overlay for your system,
it's easy to modify it for use with a 14.4k modem. You
should also be able to adapt BYE and your MEX or QTERM
overlays using the same techniques. See the end of the ar
ticle for information on downloading the Yasbec SBC (Z180)
versions of the 14.4k IMP and ZMP overlay files.

I'll limit my discussion here to modem port speeds of 19.2k.
With higher port speeds, you encounter other issues such as
hardware handshaking and character buffering. The Yasbec
integral ASIC serial ports, for example, don't have buffer
ing and mayor may not be able to talk to a modem at 38.4k
without dropping characters. If your modem port can run
at 38.4k with handshaking and buffering, though, and you
want to try running a 28.8k modem at 38.4k, don't be afraid
to give it a shot.

For 14.4k connections, set your modem serial port to 19.2k,
8 bits, no parity and one stop bit (8Nl) before you run IMP
or ZMP, as neither overlay specifically initializes the mo
dem port. Don't try to run a 14.4k modem at a serial port
speed of 14.4k! If you find you can use a higher modem
port speed without dropping characters, it will improve ef
ficiency somewhat. USR's ATI4 command will display the
current USR modem's settings and will also quickly show
you if you're dropping characters or not.

Ifyou aren't familiar with 14.4k modems, one change from
2400 baud operation is that the 14.4k modem must be ini
tialized differently since it operates differently. That means
that we can no longer use the 1200 and 2400 baud modem

The Computer Journal / #79

initialization strings built into IMP. High speed modems
also have some new features that require proper initializa
tion.

1200 and 2400 baud modems require that the modem port
speed be the same as the modem connection speed. When
you connect at a different speed, your modem overlay has
to change the modem port speed to match. No longer. The
modem port speed stays fixed and the modem determines
the connection speed and provides buffering so that the data
always flows between modem port and modem at the fixed
rate. For the USR modem, the command '&B1' tells the
modem to maintain a fixed modem port speed.

Another new modem feature is ARQ error control, which is
enabled in the USR modem with the command '&M4' and
disabled with the command '&MO.' Error control is only
useful when connecting to another high speed modem. ARQ
error control should be the default for the best 14.4k con
nections.

Few 2400 baud modems, however, support ARQ error con
trol. 14.4k modems will negotiate with the remote modem
on connection and if that modem doesn't support ARQ,
yours will fall back to disable it. But that takes time and
can interfere with the display of the remote system's logon
screen, so it works best to always tum ARQ off before call
ing a 2400 baud system.

Data compression is another new feature which works only
with another compatible high speed modem and is used to
provide compression during data transfers. Most BBS files
are already compressed and little can be gained from data
compression when transferring already compressed files.
Data compression is most useful when you're transferring
plain text files. '&K1' sets auto enable/disable.

The High speed IMP245 Overlay

I2YN14-2.z80 is an IMP245 overlay file for use with the
Yasbec and USR modems for connections at up to 14.4k.
You can adapt it for use with your system by replacing the
computer-specific modem code with the equivalent code
from the current overlay for your system.

The 14.4k IMP overlay uses two high speed modem initial
ization strings at STRNG1 (ARQ error control and STRNGA
(no ARQ error control) that are specific for the USR

17

Sportster or Courier 14.4k and 28.8k modems. If you're
using a different modem, remember to check your manual
and modify these commands as required. Ifyou choose, you
can save the modem initialization strings to the modem non
volatile RAM NVRAMO and NVRAMI using the &Wn
commands and change the strings in the overlay to initial
ize the modem using the shorter ATZn commands.

Modem initialization can be done in many ways. Don't be
afraid to read your manual and experiment. The USR ini
tialization string I use for IMP and ZMP is:

AT - Attention command
&FO - Load generic factory template

Then I modify the &FO template:

&M4 - Enable ARQ error control (&FO default)
(&MO disables ARQ)
&Kl - Auto enable/disable data compression (&FO default)
QO - Display result codes (&FO default)
VO - Display numeric result codes for IMP
(VI - Display verbal result codes for ZMP)
X4 - Display full result codes
&AO - Disable extended result codes for IMP
(&A3 - Display all protocol indicators for ZMP)
&Bl - Fixed modem serial port speed (&FO default)

The HS2400 equate in the overlay now controls the modem
ARQ error control default. Set HS2400 to YES ifyou mostly
use 14.4k connections and you want ARQ error control
(&M4) to be the default and set it to NO if ifyou mostly use
2400 baud connections and you want ARQ disabled (&MO)
as the default.

The IMP overlay uses IMP's SET command to toggle and
display the ARQ error control setting, replacing it's origi
nal function of setting the baud rate. Use the SET com
mand 'SET N' from the IMP command line to disable ARQ
error control (&MO) before calling a 2400 baud modem.
ARQ can be also reset from the IMP command line 'SET
Y' before calling a l4.4k modem. The current ARQ state
will be displayed during operation and on connection.

When a modem makes a connection, it sends the computer
a connection result code, either a number or a phrase de
pending on how you've configured the modem. The mo
dem program can then identify the connection speed and
switch from calling mode to terminal mode, ready to con
tinue. Since IMP and ZMP were writtten before high speed
modems, neither one can recognize the two-digit high speed
result codes. The l4.4k IMP overlay gets around this prob
lem by including a patch for IMP. COM that replaces IMP's
300 baud test with a test for any two-digit result code, sig
nifying connections at rates greater than 1200 baud.

IMP's file transfer time displays are based on MSPEED,
the serial modem port speed byte. The overlay starts with
MSPEED=9 (19.2k,) the closest MSPEED to 14.4k. Since
the l4.4k connection speed is slower than the 19.2k
MSPEED value, the transfer times IMP displays for 14.4k

18

connections will not reflect the actual connection speed and
should only be used as a general guide.

If your modem connects at 2400 baud, the overlay will
change MSPEED to 6 (2400 baud) so that the displayed file
transfer times will match the 2400 baud connection speed.
A subsequent 14.4k connection will change MSPEED back
to 9.

The High speed ZMP15 Overlay

ZMO-YN14.Z80 is a ZMP15 overlay file for use with the
Yasbec and USR modems for connections at up to 14.4k.
Like the IMP overlay, you can adapt it for use with your
system by replacing the computer-specific code with the code
from the current overlay for your system. ZMP supports
the fast and efficient ZMODEM file transfer protocol, which
is compatible with the PC BBS version. It's also very use
ful with CP/M remote systems that support ZMODEM.

In order to take advantage of the ZMODEM protocol at
l4.4k, however, the original ZMP overlay routine MRD has
to be modified, as the lOOms software timer in the routine
won't work properly at high speeds. You can use either of
two approaches.

The first requires your system to have a lOOms interrupt
driven or hardware timer or down counter available. The
Yasbec ZMO-YN14.Z80 overlay uses this hardware ap
proach, as the Yasbec n/BIOS and BIP Bios both have lOOms
interrupt-driven down counters as part of the bios code. The
n/BIOS TIME call provides the address of a lOOms inter
rupt-driven down counter in the bios. The down counter is
set and checked at the MRD label in the overlay. Since the
BIP Bios down counter isn't directly user-accessible, BIP
Bios must be slightly modified to provide user access to the
MTM down counter located in the FDC-xx.Z80 module.
One way to do that is to modify the TIME routine in the
TIM-xx.Z80 module so that a call to TIME returns the ad
dress ofMTM in register BC, since that register is not pres
ently used or preserved. Setting the BPBIO equate in the
ZMP overlay to YES provides for BIP Bios MTM access
when BIP Bios has been modified as described.

Ifyour system doesn't have a hardware timer available, you
can take the software approach used in the Yasbec
ZMOYN14A.Z80 overlay, which modifies the MRD routine
the way Simeon Cran did in his MYZ80 ZMP overlay.
Instead of calling MIRDY (renamed to AUXIST in the
Yasbec ZMP overlay file) to check the modem input char
acter status, then waiting 100 ms before checking again, it
calls MlRDY many more times and does no waiting at all.
Simeon says that the number of times MIRDY is called
probably needs to be adjusted according to the speed of the
system, but it doesn't matter too much if it calls too many
times. He used 4000 in his MYZ80 overlay and that value
also works fine on my 18 Mhz Yasbec system.

Ifyou use the software timing approach, you'll probably find
that when you first try to dial a number, ZMP will abort the
call before completing the connection, since all the charac-

The Computer Journal / #79

ter waiting has been eliminated. I fixed that problem on
my 18 Mhz Yasbec system from the 'c' configuration menu
by selecting 'M' for modem configuration and changing the
Redial timeout delay from the default of 40 to 750. That
allowed four rings before aborting the call (the default 40
with a hardware timer allowed 7 rings.) You'll probably
have to adjust the value for the clock speed on your own
system.

Unlike IMP, ZMP has no provision for a modem initializa
tion string in the overlay. Instead, you enter a modem ini
tialization string for your modem from the 'c' configura
tion menu by selecting'S' for Sei modem parameters. As
far as I can tell, the initialization string is not sent to the
modem unless you directly specify it from the 'L' menu.
See the IMP overlay section for modem initialization infor
mation. Before calling a 2400 baud remote system, be sure
to send the USR modem the string'AT&MO' from the main
screen in order to turn off ARQ error control.

Like IMP, ZMP doesn't recognize the two-digit high speed
connection result codes. Since I couldn't patch the ZMP
code to take care of that, ZMP requires some user action
after placing a call. When ZMP makes a connection and
displays the result code, you'll need to press ESC (ignore
the resulting 'Call Aborted' message - it hasn't been.)
You'll now be back in terminal mode, ready to continue
when the remote computer signs on. Not elegant, but it
works.

Like IMP, ZMP's file transfer time displays are based on
MSPEEO, the modem serial port speed byte. Since this is
not the actual connection speed, the transfer time displays
are based on MSPEEO, the modem serial port speed byte.
Since this is not the actual connection speed, the transfer
times ZMP displays for 14.4k connections will not reflect
the actual connection speed and should only be used as a
general guide.

The ZMP overlay assumes that you're running ZCPR3 and
contains the routines required to obtain the terminal cursor
addressing and highlighting control codes from the Z3TCAP
terminal capabilities module in the ZCPRJ environment. If
you aren't using ZCPR3, order NZCOM right away! Alter
natively, change these routines to suit your specific termi
nal.

Obtaining the Overlay Files

You can download the full modem overlay files in crunched
form as 12YNI4-2.ZZ0 (for IMP245) and ZMO-YNI4.ZZ0
and ZMOYNI4A.ZZO (for ZMPI5) from any of the follow
ing BBS systems:

Adam's RiBBS (WA) (206)481-1371 (2400-PBBS)
OHN· (PA) (215)535-0344 (2400-HBBS)
ZeeMachine (CA) (408)245-1420 (ISON-Maximus)
TCJIDIBs BBS (CA) (916)722-5799 (l4.4k-Wildcat)

The Computer Journal / #79 19

Simplex-III Architecture

This is the second in a series of articles describing
Simplex-III, a home-designed CPU. The machine was built
in the late 1970's from discrete TTL logic. In the last issue,
the historical background was reviewed, and the reasons
given why the machine evolved as it did. This article de
scribes the general architecture, which borrowed heavily
from the British GEC 2050, a machine on which I had
several years' experience.

Since the GEC 2050 (and hence Simplex-III) used a
register-to-memory architecture, it follows that every mi
cro-cycle will normally run one memory cycle. This set the
speed of the machine, and logically pointed toward a very
close memory/CPU coupling, where the main internal CPU
clocks are so timed as to serve also as the RAS/CAS memory
clocks. The DRAMs used were IuS cycle, so the basic
machine cycle was made a little longer: 1.6uS. It should be
noted that the very old DRAMs used had a different RAS/
CAS timing relationship than is now usual.

Like the GEC 2050, Simplex-III is a big-endian ma
chine, the least-significant byte of a multi-byte object being
at the highest address. The "address" of such an object is
defined as the address of its least-significant byte.

One irregularity is that Simplex-III advances the in
struction pointer (S register) before executing the instruc
tion. This only affects jumps: the address of an instruction
is defined as that of the byte immediately below the instruc
tion in memory. If I had ever written an Assembler for
Simplex, this could have been hidden from programmers.
This nasty was left in, as it simplified the micro-code
considerably.

Simplex-III had 5 programmer-accessible registers,
implemented in a 16-byte TTL RAM. These registers are
listed in Table 1. The "address" listed is the location in the
RAM (or "scratchpad").

Operands in memory were accessed by taking a 16-bit
index register (one of S, Xl, X2, X3), and adding an 8-bit
offset byte (zero-extended to 16 bits). In the tenninology of
the day, the X registers were termed "index" registers,
although modem parlance might name them "bases" in
terms oftheir function. The X registers are useable either as
address-bases, or as general workspace.

20

Simplex III
Part 2

by Dave Brooks

All instructions are 2 bytes: a function byte and a data
byte. The latter may represent either an address offset or
literal data, zero-filled to 16 bits as necessary. The func
tion-byte was regarded as the "least significant" of the byte
pair, hence it occupied the higher memory address.

Register operands were one of A, Xl, X2, X3. When an
index (X) register is the operand, the data length is fixed at
2 bytes. The "effective length" of A could be set from 1 to
8 bytes, by loading an internal register with the desired
length. This length then persisted until changed again.

Bit Numbering

Consistent with the big-endian architecture, the most
significant bit of a register is Bit-Q. Bit groups are referred
to as, for example, 1[0:7], meaning Bits 0 through 7 of
Register I, with bit 0 most significant.

Organisation

The register layout is shown in Fig. 1, the principal
hardware components being listed in Table 2. Internal data
paths are 8 bits wide, with longer operands being processed
by repeated cycles. Address pointers auto-index at each
microcode state (or "box"). The store address auto-decre
ments, while the scratchpad pointer auto-increments. Multi
byte objects are processed by repeating the current micro
code state as needed. This is much more efficient than using
explicit loops in the microcode.

All the programmer-visible registers (except C) are in
the scratchpad RAM (named "SPAD" in the drawings).
This register bank is duplicated, for interrupt and base level
operation. Consequently an environment switch between
interrupt and base level takes essentially zero time, the
register-bank being switched as the current instruction com
pletes.

"R" is the "anti-race register", needed as the SRAM
was not edge-triggered: it could not do read-modify-writes.
The "R" register was edge-triggered, and could serve as an
additional temporary data store.

RFA is the "refresh address" (5 bits in the Ikb DRAMs
I was using). It is multiplexed on to the address bus when
the CPU does not require the bus for data transfers.

IPL denotes "initial program load", ie a boot ROM. In

The Computer Journal / #79

A)

Major hardware items:

5-bit microcode state address
32 x 16-bit ROM (diode matrix)
32 byte bootstrap loader code

fact this ROM code was never implemented: boot code was
loaded by hand from the panel switches.

Clocking

The master clock was a 9.47MHz crystal, which hap
pened to be in the junk box. The clock signals are shown in
Fig. 2. A full micro-cycle is 16 cycles of the crystal, or
1.68uS. This cycle corresponded to a read/modify/write
cycle of the DRAM. The clocking used a 4-phase model,
with the 4 primary clocks named after Greek letters. The
clock nomenclature is listed in Table 3.

DRAM Refresh

This was built into the CPU, in that every microcycle
which did not actually need the DRAM data bus, automati
cally ran a refresh cycle. Since all instructions include at
least two such cycles (while S is fetched and incremented),
refresh is always guaranteed. With the refresh logic operat
ing independently of the microcode (it was in effect, inter
rupted to run a "real" data transfer on the bus), refresh
continued during CPU halts, even at the lowest microcode
level.

This had another useful property: a 5-bit count was
available on the backplane. This was used to drive multi
plexers on each board, which scanned out the states of their
internal registers, as sequential streams. These were
demultiplexed on the monitor card, to drive the panel LEDs.
This monitor card was in the front position in the card
frame, with a window in front of it. The LEDs are mounted
directly on the card.

Hence every refresh cycle is also a monitor update
cycle. Now when the machine is stopped (even at the
microcycle level), every bus cycle becomes a refresh, and
hence the display is constantly updated.

Next issue

This article has described the overall architecture of
Simplex-III. The next issue will describe the machine in
structions, and present some program fragments, to illus
trate how they were used.

The Computer Journal / #79

Programmer-Visible Registers

Name Bytes Address Function

S 2 0 .. 1 Sequence (instruction pointer)
X1 2 2 ..3 Index / data register
X2 2 4,,5 ditto
X3 2 6.. 7 ditto
A 1..8 8.. F Workspace (accumulator)

Microcode counter
Microcode ROM
IPL ROM

ROM
SPAR Scratchpad address register (4 bits)
SPAD Scratchpad (programmer-accessible regis-

ters), broken into
A Accumulate (length 1..8 bytes selectable)
X1 Index register (for store addresses)
X2 ditto
X3 ditto
S Instruction pointer

I Current-instruction register
ALU Arithmetic-logic unit
R ALU Result register / anti-race latch
SAL, SAM Store address register (2 bytes)
RFA Refresh address (5 bits, for 1kb DRAM)
C Condition codes (Z, N, CA & length for

Outputs from the clock generator:

ALPHA\ Preset carry, clear R, count
microcycles, register addr.

BETA\ Load R, condition-bits, carry
GAMMA\ Strobe in results
DELTA\ Count memory address, step microcode
PC\ Precharge for DRAM
W\ Write for DRAM & /0
PHASE2 Sets 10 buffers to output

21

0----1 Counter

OJ
L
o
.p

Do.to.

3-sto.te bus

~
II-r---------r------r---,.-----l<r

CIl

SPAD
2 levels

OK' volue -----'l1 ~

Po.nel keys~I

ROM

IPL
ROM

Control
Slgno.ls

Microcode

o
o

Ftnction
switch

ALPHA\

BETA\
GAMMA\
DELTA\

PC\

w\
PHAS EL..--+_...l....-----l-.----l-.--...J

22 The Computer Journal / #79

TCJ Center Fold
P112 board

by David Brooks

With the idea officially up and running, it was alIo
cat~d the next sequence number on my Company's project
register - 112. That of course, is the origin of the name
"PIl2", if anyone wondered.

It was ~arly ~ecided to provide a PC-like parallel printer
port, as senal pnnters are now rare birds. With two serial
interfaces besi?es, this would be adequate for most purposes.
A bus-expansi?n connector was an obvious necessity, both
for add-on projects and for initial testing. Since the 3-inch
drive form factor is not mechanically compatible with any
standard bus, there seemed little point in more than a simple
trace-out of the CPU pins. It was anticipated that the ma
jority of applications would use the board stand-alone, any
way.

There then ensued a long search to find parts with a
reasonable life expectancy. User feedback had shown that
the origi?al 64kB memory space was inadequate; some form
?f mappIng was needed. Since this logic could not be put
In a FPGA, the 2180 core architecture became attractive
as this function is included. The Zilog 2182 rapidly emerged
as the best CPU choice, and includes sufficient serial 10 for
the purpose. Enough spare parallel 10 pins were also avail
able to emulate a basic printer port.

The disk controller proved a long hunt. All the old stan
dards are now on "death row", being due to be dumped from

THE "P112" BOARD FEATURES

Dimensions: 130 x 100mm (5.1 x 3.9
inch)

Support for 5.25 and 3.5 inch diskette
drives (up to 4 drives, mixed types)
Z80182 CPU at 16MHz (12.228,
18.432 or 24.576MHz optional) 32kB
flash ROM, in-board reprogrammable

64kB SRAM, upgradeable to 1MB
5V-only power supply (150mA plus drives)
Real-time clock/RAM, with on-board

battery
5 (yes, five) serial 10 ports, 2 as PC-AT

compatible connectors, 3 as TTL
outputs

Parallel port, IBM compatible, with
bidirectional ability

Bus expansion/logic analyser socket
Software included:
Shareware DOS+ and CCP+ (replace

CP/M)
Shareware PPIP (replaces PIP)
Shareware UUENCODE & UUDECODE
BIOS support for diskettes, parallel &

RS232 serial ports, ROM monitor
including debugger '

Thi~ project originated in a thread of about a year ago,
on the comp.os.cpm' Usenet newsgroup. A number of
people observed that their trusty old 8-bit systems were start
ing to sh~w their age, and regretted that no current designs
were avaIlable to run CP/M [tm] or similar software. My
own CP/M platform was an ageing "Little Big Board" (Pul
sar Electronics, Australia), in a SID bus format, running a
pair of 5-inch drives. It too, was due for replacement.

It. happened that this expressed need chimed with a long
standmg dream of my own. Having designed from scratch
a Z-80 powered commercial system (has anyone heard of
the "Index 2000?") back in the late 70's, I had a yen to re
work that idea using modern parts. I just needed an ex
cuse. A first look showed that it should be feasible to put
the whole thing in the same form factor as a 3-inch drive
and bolt it straight to the drive. '

Discussions on-line hammered out a rough consensus.
My original idea had been a little too high-tech: I had
pla~n~ to use surface-mount devices throughout, with glue
log.ic 10 FPGA's (I use these techniques in my working life).
ThiS was far more than the prospective users wanted: they
were looking for through-hole technology to assemble them
selves.

U3
629129

U4
29F256A

R4D4i<7

R3D4i<7
[M3Hdr-

The Computer Journal / #79 Center Fold 23

~I . I ~ I 3 I 4 I 5 I I> I 7 I 8 I

01
41t7

0,,_
a Dt

R'

02
DJ

4J< 7

04
OS
06
07

VJ
620120

.,- ~~~or1 o~ \f\tted

RAI1I \

At7 2 RA~B\

RAI1t \

ROI1\

QnMrC\

PINTO' I J~ INT2\

rtST\ 99 RST\

PS 2Hdr

.------"'-1 v... v- i--'!~-~
3 C\t- C2+

d:; + C6

1"TI4 1uF'
~ur 4 Ct- C2-

F

E

D

c

B

A

~~

8

U!j£ 1,
,uN40,.

--tl. u=:
..1lJL

:i!:
Ai

H
.IUa
lU.1

lli
il
.e..l.,
1i)
A4
1IT4...o.
:~11CS\

i1"'R1>\
HUR\

~~~T'
~

~~~g5\
~
~r-
TH""f'0\
TENOe\

ENDI\
ll-
>;TRO\'"' rt

DliA RiilqU.Sl S.lect:

P2
SPIN

rDCRO\ t
2 DREos,

E).:TRO\) • DREOI'
StORO' 5

Nunber P112-Bt2 IReclS\On

\ 1.: Pl1..2-9121

7

OJ

liTe 200\02 CPU Board
Cop~r\ghl Ie) \99b D-X Oes\gns Pt~ Ltd

DO
0'02
D)
04
DS
D.
D?

U£2\f-2-

V2
6213\20

~

a,
m

PIJ
n

C>--
JHd

m
n

f>

'tt---+H =~ D.
02 Dt
0) 02
A' OJ
OS 04
O. OS

" 07 D.
A. 07
A'
At. V4 UPP0" 20F'256A
0'2

UPP tA"
A"

5

UPP

JS RTse
r;--c T 5 e
'--OCD&
rr--TXA9
'--RXAB
;--rXA 1
r-RXAI
CCTSl

PB.
PB,
PB2
PB)
PB.
PBS
PB6
PB7

IDes~ItOCs\
RA~CS\ RAMCS\
ROliCS\ ROMCS\

-N
~~

"''''

~[

4

// ~ ~ =~ H--i0_ a a
Q::!: ...
UlZ x

.. 02
:> '"

x 0).. O.
AS
O.
07
O.

Ut
o.

01.
ZDato2 Ot t

At2
A"
At.
AtS
A"
At7

AIOITO
0"

r
ST

PH'
INT0\

l
'C .J.. C -l

2~pr g .",k.

~ ~o~~,,:~'
'"

II"D D'
02
DJ
D4
DS
O.
07

72 lEI

96 UAIT\

76 I TXDA
DCDA
DTRA
RXDA
PA.
C TSA• P07

t SVNCA

~ UREOA

SYNCB OJ SVNCB
~IORO' UREOBXDB RXDB
TX B TXOBDT DTRB
CTS CTS8
• DB OCDB
TRxeB TRXCB
RT>t 8 RTXCB

DR~Oe' 43 OR(OQ\
DllO~ OREOt\

=it PA4, PA)
) PA 1

PO.
PA'

~PAS

J1el'lor ... Address \ ng:
NorMi:ll use: 1-2,)-4
Bootstr .. p: 1-), 2-4

3z

U7
L T\ pJ

51 010011 12 \
R I (R to
020 021
R2 r R20

F'tNTR

? -i

B I

R J r R 30
Ri{ R40
0)0 03 t
RS [RSO

I E I

-~

UA t T \

:~~ ~:~k ~:~k ~:~k

Progrl:lM \nts. (or
<tet l ve-lou

~
c

At) 411, (Mla\
~

lieNor\! S\Z\n9:
At& for J2kB p~r\~

At? ror 1201<8 parts
At9 far 612hB PDrts

1

-
'--

P4
~IN

5

D

B

c

A

(")
oa
o...
'Tj
o
Q:

IE
....,
::r
0

(")
0
3
'l:l=et...
..... I F
0=a
~
........
=II:
-...l
\l:J

.....,.,_,._.... _'0'"$

E

y

D

c

B

A

ev\s\on
e

9

Pt~ Ltd

1 N

.1 2

P\12-Bt2

7

.J

(,

PttrlJ 1 \111

54

vce

32

.. PC"
JBC •• JBf
Jr9 •. Jr7

vnHI I1IH
M

5: .
P9 PI0

LIVE 44 lOR\ Cl''''IJ)'''C3
J4PIN HP

1 aU\ ¢~(I:¢ct ROATA\ if> RDATA\ l I
9 UG ATE \ NSEL ENS£L

0 UDATA\10 HDSEL\ HDS \

U : C rDR 52 rDRO D I R \

51 74HCTBe 4. STEP\
D KC \ TKe\"EN DSKCI-4\

059\
DS\\

R2\ I1TRB' I1TR2\052\I DS)\
I'!TAB\2 IHR \ \.
IHR2\
IHR)\ \

DENSEL V
U. UPROT\ UPROT\
FDC)7CbbS TRKe, K \

INDEX\ R 1€I \
DRRTEe DRAT Q 271< STEP\ STEP\
ORATEl

OAT \. UDATA\
1><01

\DeO\\
DTRt\

TK0\ TK0\RXD 1
DSRt\

UPR D T \. UPROTelSt\.
RT51\

R 1 \ \. R AlA\ RDATA\.
flNTR Rlab Rle2 HDS E L \. HDSEl\I R004 O. 271< 211(

R 103PIMTRl T>\02
OTR2\ RlB7 27k 271< SKCG\ DSKCG\

IDMLO\ RTS2\ RiBS 271<
IDMHI\ OC02\
HOCS0\ Rl2
HOCS\\ RXD2
IOE07 CT 52\

POt OC It>\ DSR2\
e25 UIO \ 0P I N

22pr 20 5 T B'\ LTlt)]
6 Ser\

1 CLK ArEEO\ 21 011 010 6

o ~~11H;Z:
PD~ 010 0"

ERR\ D21 020
PDI .20 R2121 OCLK I l'll T\ RJD R){

C,. PO 2 R40 R41
~ \ t t SLCTN\ DJ! DJD22pF
271< &0 PDJ 050 R51

PURGD PD4

R51 57 PD5
IR51 PD. V- V'

J6 PD7
JTC ACI<\ e2' CI'

BUSY +PE C \ \ +•• ORV2 sLeT lur C9•_ .. J7 100 e2- CI- lur
':'" 2 71< I RO] IDeROY

V\5
TL 1705ACP f" \l Run - R \ \ 1

I REF ,f us\ng "&52'" &&b VCC vce PI4
SENSE R7 parts onl~ 20PIN

RSIN\ I BI< TXAI \
5YN 2 R){A&

e1 RS\ RST\ XD RT •
15

U5: B C 6
RS • "51 74HCT00 DC • TR

~FDC'O\
C 51

>R10 elSe u>101< F"OR 5 RXAI

l DCD
RTXCB ,

TXD
vec

C1S 6

CIO
19Bnf" RXA9

!ST\ NB TEND1\ = RTSB

C24
taenF" T\ t le ZO&\02 CPU Board

COPl:lr\ght f <I \996 D-X De!J\gns

~ D .. ~ ... , , .. , S \ ze NUI'lber 0

uo: C
74ACT92

'" ~

""J
VCC

41<7·

C2, ----'- ---'--
10Bnf T_ T CJ0:::r:::--- \00 n

I/O Addrlilsses:
Z 102

ae •• or Para\ lel Port.
99 .. 97 FloPP~ contrl
90 •• 9r Se \iI\ P
AB •• Br r lapp ... (

ExPtlns\on Adresse
41L.7r
C0 •• D7

PQuer Connl!!ctor

~,
~

PRST\

rOeS\

I'll\.

y

E

D

c

(j
t'll
='t'll...
61
c:

~
=r'
t'll

(j
0
3
"g I A-t'll...
.....
0=...
='a
--:#:
-.)
\0 ,

B

2 3 " 5 (,

r\1~-0\272

7
r;aun~

9

IV
VI

production in the near future. Eventually I selected the SMC
"Super 10" line. These are designed as multi-function 10
devices for use in PC's: providing full-featured disk, serial
and parallel ports. Of course, these parts are designed to
work in a ISA environment, and some glue would be neces
sary to adapt the Z180 bus. At this point, I was glad to
read Claude Palm's article in TCJ (NovlDec 1995), describ
ing his problems with Z80 interrupt cycles and DMA de
vices. Being forewarned to that problem doubtless saved
several sleepless nights.

It would have been attractive to use standard 1MB
SIMM modules, however the amount of glue logic required
made this impractical. Z80 "DRAM support" is in practice
limited to providing refresh addresses (with insufficient bits
for modern parts). Address multiplexing and clock timing
require additional hardware.

The board was designed to take a single ROM part, and
I or 2 static RAMs. This enables a 64kB system to be built
with two 32kB SRAMs, or a larger system using 128kB (or,
for the wealthy, 512kB) parts.

The SMC part also offers "IDE support", however this
. is little more than address decoding. The big part of run
ning IDE drives on a 8-bit machine (as Tilmann Reh has
shown earlier in TCl) is matching the IDE 16-bit bus to the
8-bit CPU. While this can be done in slow-time using soft
ware and two 10 ports, I intended the disk to operate under
DMA control.

The logic for this was prohibitive (FPGAs not being al
lowed), so IDE was not provided. An add-on board could
be done later (as of this writing, this has not yet been done,
although Harold F Bower <HalBower@msn.com> has built
a SCSI controller board, along with much other improved
software).

I resisted pressure to use a 2-layerboard: with the CPU
and 10 chip only available in 100-pin flatpacks, there would
be some very close signal paths just where power/ground
noise would likely be worst. The decision has been justi
fied in the reliability of the 4-layer board as built.

As few people care to install such parts at home, I have
made the boards available part-assembled, with the flatpack
chips and 3 surface-mounted diodes pre-installed. The re
maining components are standard through-hole types.

Boot code was put in a flash ROM, although cheap glass
EPROMs can be fitted. I now use flash ROM exclusively
in my regular work, and the time saved fully justifies any
extra cost. The ability to re-program in place is a real ben
efit.

SOME THINGS LEARNED

As with all Z80 devices, there are several clock cycles
for each bus transaction. This means the CPU clock is not
much use to trigger a logic analyser. On the Z182, the "E"
output provides exactly the infonnation required: trigger the
analyser on a negative edge at this pin, and the required
information is available on the bus pins. This "clock" gives
exactly one edge per transaction, as required.

Signal timing to the SMC chip can be quite critical. In
particular, signals such as AEN\ and the addresses are
latched on the falling edge ofRD\ or WR\. If AEN\ for ex
ample, is generated by gating from the Z180's IOCS\ line,
this timing is not met. See the schematics for a solution.

When driving the SMC chip's printer interface, poll for
ready before (not after) sending data. After sending, the
port status should not be read for about 40uS, else it will
lock up and never become ready. The software overhead in
fetching the next data byte will nonnally guarantee the de
lay.

BRINGING IT TO LIFE

Initial tests were done using an old debugger module
which I now use as a "standard" to bring up any new Z80
based hardware. Providing facilities similar to MS-DOS [tm]
Debug, but in a hardware-only setting, this module enabled
me to walk through exercising the basic hardware functions.
The flash ROMs were programmed by plugging into another,
working system.

The only real hardware "gotcha" encountered was in
the timing ofsignals to the SMC chip. (Moral: RTFM, most
carefully) This area was re-designed, and now works reli
ably.

With the hardware operating, it was time to install soft
ware. The disk driver software was written to be controlled
by a table formatted identically to a PC BIOS table. This
meant that such tables could immediately be "borrowed"
from my PC to set things up for various drives. The use of
PC-eompatible formats also meant that first-eut disks could
be built on a PC.

The first step was to port the old Little Big Board sys
tem (my own rewrite of the original Pulsar BIOS). With an
old 5-inch drive connected to the PIl2, an old LBB disk
was copied, and the BIOS sectors overwritten for a first
system disk. After the usual bug fixes, this worked. CP/M
was now live on the PIl2.

The first BIOS included fonnat tables for 5 and 3-inch
disks. A crude "format" program was written, to run under
CP/M, and to accommodate both disk sizes. This built the
first 3-inch disk.

With the system booted from the 5-inch disk, standard
utilities could now copy program files between the disks,
and soon a true 3-inch version was running.

To avoid copyright problems, the distribution disks have
CP/M replaced by shareware equivalents. Harold Bower
<HalBower@msn.com> has also written an enhanced BIOS,
and improved my orginal disk format. These improvements
are available via my web-site.

Dave Brooks is the head of D-X DESIGNS PTY LTD, 7
Buchan Close, SPEARWOOD, Western Australia 6163
Tellfax: +61 9 434 4280
Email: daveb@iinet.net.au
Web page: http://www.iinet.net.au/-daveb

With over 25 years digital design experience, D-X Designs
Pty Ltd provides a custom design service for digital equip
ment. We specialise in embedded applications, with expe
rience in 8051,8085, Z-80 and 80186 processors. Software
capability inc/udesAssembler, Pascal, Fortran C and C++.
Our second speciality is design for Xi/inx FPGAs, for which
we have a full tool-set.

26 Center Fold The Computer Journal / #79

Real Computing

By Rick Rodman

REAL COMPUTING

According to Greek legend, Damocles had to eat an entire
meal with a sword dangling above his head, suspended by a
single human hair. It was not conducive to good digestion.
This is thought to be one of the first demonstrations of the
importance of reducing system overhead.

The Distributed Real-Time Control System

Home automation is one of my favorite computer applica
tions. Some approaches I've tried have included 8-100
boards driving relays and VIC-20 and C-64 machines with
X-IO interfaces. The problem always seems to come down
to where to put a central controller. If it's in my bedroom, it
makes too much noise for me to sleep at night. Ifit's in the
furnace room, it's not very handy to use.

My latest design uses a controller machine which is left on
all the time, connected to the LAN so that other machines
can access it. That way, once I run Ethernet up to my bed
room, I'll be able to turn on my laptop and issue a request,
without having to permanently dedicate my laptop to that
purpose.

Actual real-time control is performed by a machine which,
as I mentioned, must be powered up all the time. At present,
this machine is an ffiM PS/2 model 30, which is actually a
type ofXT. It operates an X-IO Powerhouse CP-290 inter
face. It has a 3COM Ethernet card and a Watson telephone
voice card.

I've described the CP-290 before, and have written simple
routines to interact with it. I also have a TW-523, but it
appears to require fairly constant CPU attention, which I
don't think I can give it at present. The TW-523 has a ca
pability of interrogating modules to determine their current
state. However, I think this is a basic X-IO feature which I
will also be able to do with a CP-290.

The software on the Model 30 listens for requests on its
Ethernet card. On my Sun, a simple C program makes re
quests through the net based on command-line parameters.
Soon, this C program will be invoked by a Perl script acti
vated by a button on a HTML script, allowing device status
and control from a Web page.

The Computer Journal / #79

Where does the system run? It runs, in part, on each ma
chine. In fact, it could have more pieces running on other
machines besides those two.

As I discussed last time, I had been working with TinyTCP
for this project. However, after much labor, I had to set it
aside - even TinyTCP just had too much overhead - and
started afresh to design something even simpler. If Mr.
Baldwin permits, I will accompany this article with "snip
pets" showing key code parts. I think this could be of inter
est to other folks who are using XTs for embedded projects
and want to incorporate networking with an absolute mini
mum of code.

Before I go too much further, about the heading: I call this
setup the Real-Time Control System, but there's real-time,
and then there's Real-Time. The software on the Model 30
is basically a big polling loop. There aren't any interrupts.
I get around to the Ethernet when I get around to it, and the
CP-290 operates at a leisurely 600 baud. Some folks will
say that Real-Time means you've got to have a multitasking
kernel with priority-based preemptive scheduling,
interprocess communication, automatic deadlock detection,
and so on. I say, real-time just means "fast enough", and if
the Model 30 runs out of gas, there are three 286s in the
storage room. But I like the Model 30 because it's small.

Basically, I started by snipping small parts from the 3C501
driver of an old version of KA9Q. I have three of these
boards, each of which I've acquired for a dollar or less. No
matter what people say about them, they work.

The first thing to get working, after a simple packet receive
routine (I didn't bother with using interrupts either), is an
ARP (Address Resolution Protocol) routine. Every Ethernet
board has a 6-byte unique ID burned in its PROM. In Novell
IPX, they use the Ethernet ID directly, but in IP, there has
to be a mapping performed. One machine who has never
spoken to another must broadcast an ARP request to deter
mine the Ethernet address that corresponds to the second ma
chine's IP address. ARP is described in RFC 826.

At the outset of this project I decided to use no data struc
tures beyond simple arrays of shorts. Thus the constants
IPH_SRC_IP_L, and so on, are offsets into an array. The
entire message is passed to each layer, so all underlying ad
dresses are always available. Listing I shows my routine

27

for distributing incoming packets, and listing 2 shows my
ARP routine. Notice that it does as little as necessary.

Once you've got ARP working, you can just go on and do
TCP or UDP (as did TinyTCP's authors). However, it's re
ally nice to be able to "ping" your machine as a check of
your work. To do this requires that you implement a sliver
ofICMP (Internet Communications Management Protocol).
And I do mean a sliver - just a ping responder, nothing else.
Listing 3 shows my entire IP layer. ICMP, TCP, and UDP
are layers above IP. Listing 4 shows the ping responder.
No matter how simple you make it, you still have to com
pute two checksums for the response message. I don't waste
time checking any checksums, though. Since ICMP is re
plying to a sender, and the entire message is always passed,
a reply can be fixed up by copying the original message and
swapping source and destination addresses.

At this point, you're ready for TCP or UDP. I decided I didn't
really need TCP, with its guaranteed delivery, transparent
stream protocol. I just want to send short commands and
get short responses. UDP (User Datagram Protocol) is a
better match for this requirement. UDP is very tersely de
scribed in RFC 768. Again, there are two checksums to cal
culate, with one based on a "pseudoheader" that's built but
never transmitted, and if anything's wrong your message is
ignored Listing 5 shows the UDP layer. Listing 6 shows
the Sun side, which is much simpler since networking is built
into SunOS.

You may think that not checking checksums is rather un
safe. Actually, since Ethernet itself has a CRC that will pretty
much guarantee good data, I don't worry about it. If a SLIP
interface were to be used instead, there'd be a danger oflost
data, and checksums should be checked.

Now, I'll be the first to admit that this kind of implementa
tion is not going to work well in multiuser, high-data-rate
applications. But then a Model 30 doesn't have CPU power
for that kind of work anyway. My whole intent is to have a
24-hour control system running in a cheap XT - if lightning
kills it, roll in another one - while other machines can be
turned on and offwithout affecting it. I haven't got the voice
board integrated yet, but if things work out, I may merge a
bulletin board into it, too!

Next time

Next time we add passwords to the BBS to stop pranksters
from turning my lights on and off. Just kidding!

LINUX
InfoMagic 5 CD Set $21.9
Yggdrasil $29.9
Linux man Pages $29.9
The New Book of Linux $29.9

Call for other titles

www.justcomp.com
011 tlie World Wide Weh

For more information

Kettle Pond Computing Facility BBS or Fax: +1 703 759
1169
E-mail: ricker@erols.com
Mail: 1150 Kettle Pond Lane, Great Falls VA 22066-1614

28

JUST COMPUTERSl
(800) 800-1648

Fax (707) 586-5606 Int'l (707) 586-5600
P.O. Box 751414, Petaluma, CA 94975-141

E-mail: sales@justcomp.com
VisalMClInt'l Orders Gladly Accepted
For cata.log, send e-mail: info@justeomp.com
Include ''help'' on a single line in the message.

The Computer Journal / #79

===== Listing 3: The IP layer. ================
int process_ip(unsigned short *p buffer, int len) {

int ip_protocol;-

/* As before, the first 7 words are the source and dest
ethernet addresses *1

1* Ignore broadcasts *1

/* ping reply *1

OxFFFF I return 0;

1* not processed */

/* If it came to us Without being a broadcast, we can assume
it's for us. */

reply[IPH_WORDS 1 = 0;

1* reverse the addresses */

reverse_eth_addresses(reply);
reverse_ip_addresses(replY)j

/* fix ICMP checksum *1

}
return OJ

reply! IPH WORDS + 1] = 0;
reply! IPH:WORDS + 1 1 = htons(

checksum(0, &reply! IPH WORDS 1.
len - (2 * IPH_WORnS »);

/* fix IP checksum - checksum of ip header only *1

reply! IPH_CHECKSUM 1 = 0;
reply! IPH_CHECKSUM 1 = htons(-

checksum(Of &reply[ETH WORDS 1,
2 * (PH_WORDS - ETH_WORDS I»~;

/* send the message */

return send_packet((unsigned char *) reply. len)j

if(*p_buffer

ip protocol = ntohs(*(p buffer + IPH TTL PROT » & OxFF;
swItch (ip_protocol) { - - -
case 6: /* TCP */

return 0; /* I don't process */
case 17: /* UDP */

return process_udp(p bUffer, len);
case 1: . /* ICMP *7

return process_icmp(p_buffer, len);
default:

printf("Unknown IP protocol %04x\n". ip_protocol);

}

}

===== Listing 4: ICMP (Ping) responder. ===============
static int process icmp(unsigned short *p buffer. int len) {

unsigned short reply[60 1; -
unsigned short type_subtype;

1* type-subtype is unreversed. First byte = 8 for echo request *1

type_subtype = ~(p_buffer + IPH_WORDS)j

if(type_subtype 1= OX0008) 1* Not Ping request? */
return 0;

/* copy input message to reply */

if(len> 120)<len = 120·
memcpy((unsigned char * l &reply! 0 1,

(unsigned char *) p_buffer, len)j

o 1,
3 I' 6);3 ,ðernet_address[0 1, 6)j

*) &reply[
)(p recv +
*) Ireply[

/* ARP */
/* ethernet */
/* protocol = IP = Ox800 reversed */
1* lengths, hW/prot, reversed *1

1* ARP reply */ .

memcpy((unsigned char *) &reply! 11], ðernet_address[0], 6

reply! 14] = OXD481j
reply! 15 1 = Ox2020j
memcpy((unsigned char *) &reply! 16 1,

(unsigned char *)(p_recv + 11), 10)j

send_packet((unsigned char *) &reply! 0], 42 Ij
return 1;

reply! 6 1 = OX0608;
reply! 7 1 = OX0100;
reply[8 1 = OX0008j
reply[9 1 = OX0406j
reply[10 1 = Ox0200j

}

) ;

===== Listing 1: Basic Ethernet pOll routine. ============
paklen = maybe receive packet(&recv buffer! 0 1, BFRSIZ);
if(l paklen I-continue; -

i = (recv buffer! 12 1 « 8) + recv buffer! 13 1;
sWitch (i T{ /* Process by protocol */

case Ox0806: /* ARP */
check_arp((unsigned short *) &recv_buffer! 0 1,

paklen);
break;

case OX0800: /* IP */
process ip((unsigned short *) &recv_buffer! 0 1,

paKlen);
break;

default:
printf("Unimplemented protocol\n");

}

===== Listing 2: ARP routine. ===================
static int check arp(unsigned short *p recv, int len) {

unsigned short reply! 30 1; -

~fl *(p_recv + 6) != Ox0608) return 0;
1f *(p_recv + 10) 1= Ox0100) return 0;

/* my address = 129.212.32.32 = 81 04 20 20 */

if((*(P recv + 19) 1= OxD481 I
I I (-*(p_recv + 20) 1= Ox2020 » return 0;

/* put two ethernet addresses */

memcpy((unsigned char
(unsigned char *

memcpy((unsigned char

-~
--J
\0

~
(l)

no
:3
"0=rt..,
0'=8
e:..

N
\0

===== Listing 5: UDP layer. ===================

partial_sum = checksum(0, &ph[0 I, 12);

reply[UDPH CHECKSUM I = htons(-
checksUm(partial sum, &reply[IPH_WORDS I,

len - (2 * TPH_WORDS I»~;

}

/* fix IP checksum - it is the checksum of just the header */

reply[IPH_CHECKSUM] = 0;
reply[IPH_CHECKSUM] = htons(-

checksum(0, &reply[ETH WORDS I,
2 * (IPH_WORDS . ETH_WORDS »);

/* send the message */

return send_packet« unsigned char *) reply, len);

}

/* try to send a datagram */

bZero(! char *) &sout, sizeof(sout »;
sout.s1n_family = AF INET;
sout.sin port = OX99~9;
sout.sin:addr.s_addr = inet_addr("129.212.32.32");

nbytes = sendto(soc, p command, strlen(p command),
0, (struct sockadar *) &sout, sizeof(sout »;

if(nbytes <= 0) {
closet soc);
return;

printf("awaiting response ... \n");

addrlen = sizeof(sout);

nbytes = recvfrom(soc, recvbuf, sizeof(recvbuf), 0,
(struct sockaddr *) &sout, &addrlen)j

if(nbytes > 0) {
recvbuf[nbytes I = '\0';
printf("received response: %s\n" recvbuf);

} else printf("recvfrom returned %d\n', nbytes);

closet soc);

Listing 6: Client code from Sun (excerpted). =====

soc = socket(AF INET, SOCK DGRAM, IPPROTO UDP);
if(soc < 0) return; - -

bzero(char *) &sin, sizeof(sin »;
sin.sin family =AF INET;
sin.sin-port = OX99~9;

sin.sin:addr.s_addr = htonl(INADDR_ANY);

if(bind(soc, (struct sockaddr *) &sin, sizeof(sin » < 0) {
printf("bind error\n");
closet soc);
return;

}

===

}

ph[0 I = reply[IPH SRC IP H I
ph[1 I = reply[IPH:SRC:IP:L I
ph[2 I = reply[IPH_DST_IP_H I
ph[3 I = reply[IPH DST_IP_L I
ph[4 I = (17 « 8 T; /* protocol */
ph[5 I = reply[UDPH_LENGTH I;

reply len = strlen« char *) &reply[UDPH WORDS I);
if(reply len & 1) ++reply_len; /* maKe it even */
len = UDPR_WORDS + reply_len; /* output length */

reply_len += 8; /* UDP length includes UDP header */

/* copy input message to reply */

memcpy« unsigned char *) &reply[0 1,
(unsigned char *) p_buffer, 2 UDPH_WORDS);

/* reverse UDP ports */

reply[UDPH_SRC_PORT I = dst_port;
reply[UDPH DST PORT I = src port·
reply[UDPH:LENGTH I = htonsT reply_len);

/* reverse the addresses */

reverse_eth_addresses(reply);
reverse_ip_addresses(reply);

/* fix UDP checksum. We have to build a 'pseudo-header'
and checksum that plus the data. */

reply[UDPH_CHECKSUM I = 0;

int process udp(unsigned short *p buffer, int len) {
unsigned short reply[60 l~

ph[6 I,
. src_port

l
dst_port, partial_sum;

1nt request_ en, reply_len;

/* Don't bother reversing port addresses */

src_port = *(p_buffer + UDPH_SRC_PORT);
dst port = *(p buffer + UDPH DST PORT).
request_len = *T p_buffer + UDPH_[ENGTH I;
/* Null-terminate the request length */

* «(char *)(p_buffer + UDPH_WORDS » + request_len) = '\0';

/* Here the command in the buffer is passed to the command
subroutine. The response is placed in the reply buffer. */

w
o

~=r
t1l

no.g
l:::
(i)...
~

ae:.
.......
~
-.l
\0

Embedded Development Choices

By Bill Kibler

I received this letter asking for help
and think other TCJ readers might be
interested in my answer. The situation
involves choosing embedded control
software and tools.

The Letter

I have had the bpportunity to coach
Odyssey of the Mind (OM) and have
really enjoyed working with kids and
teaching them some rather diverse
things. My 3rd daughter built a 5'
walking (not rolling) robot when she
was 8. To make it work she had to
learn ratios, and she hates math, and
the use ofmany hand and power tools.

I have a team of5th graders now work
ing on the ride-on vehicle problem.
My son wants to use a computer to
control part oftheir scenery and some
of the mechanical tasks associated
with it. I got a clarification from World
OM allowing them to use interface
cards which they did not build, so I
have given them a hand built card with
an 8255 on it. It has relays for output
on port B and an 74LS244 as an input
buffer on port A. He is learning to
program it in C++ (Borland 3.0) and
doing quite well.

This brings me to a problem that you
might be able to help me with. They
also want to use an embedded system
to control part oftheir project. I have
a CPU board out ofa Prolog STD bus
system with an 8085 and 2732 ROMs
on it that will work real well. I have a
cross assembler to run on my PC and
a PROM cooker, but the kids don't
really have time to learn assembly lan
guage too; their tournament is in
March and they have tons ofwork to
do. I would like to find a CHEAPI
(shareware?) C cross compiler that
would run on the PC under MS-DOS
and generate 808018085 code. As I
have only recently returned to work

The Computer Journal / #79

after being laid offfor 8 months, I
can't afford to buy much right now.
My CP/Msystem died a few years ago
taking with it my Pascal->8080 com
piler, so I have no high level language
support for my 8 bit stuff, including
lots of280 boards.

Ifyou can help us out, Hunters Glen
Elementary Amusin' Cruisin' Team A
will be for ever grateful.

Arlyn Whitchurch, Thornton, CO.

The Reply

Ok Arlyn, great going. To answer your
letter I need to start with my standard
reply and go beyond. Our last years
Computing Hero, David Jaffe, uses
Forth embedded in a 2180. He has also
used it very successfully with college
students in an engineering packaging
project much like your OM work. He
finds the students able to pick up the
language quickly and move on to the
project without getting lost in the lan
guage itself. You might want to con
tact him via Internet
(jaffe@roses.stanford.edu) and read
issue #71 for a quick review of his
work.

Should you decide not to use one of the
many Forth's for ROM and embedded
work, your best option is learning as
sembly. Why assembly, mainly because
it is simple and very straight forward
and more importantly there are plenty
of cross assemblers available for free.
Remember too that almost all assem
blers work the same, yet high level lan
guages are very different.

As to C, there are no free C cross as
semblers specifically for what you are
doing. As close as I can come is using
Small-C with assembly output for the
8080. There are several commercial
versions, the cheapest of which I think

starts at over $300. We have over the
past few years talked considerably
about Small-C and you might want to
get issue #64 where we talked in de
tail about using it. Small-C does work,
but I am afraid you or your students
might get caught spending more time
making the C work for them than get
ting the robots to run.

First Steps

Which ever way you decide to go, the
first step is seeking resources for the
needed code. We have run numerous
articles over the years about working
on robotic systems and using various
languages. Dave now has a special
price for all back issues should you not
have them, and I can not stress enough
the need to search back through the
past for help.

For people with access to PC Clone's
and a CDROM device, a number of
CDROMs would be my next choice.
Walnut Creek CDROM has about the
best assortment to choose from. Their
CP/M, MSDOS, and SOURCE disks
will each produce useful support soft
ware. I listed what I found on each
separately as there is plenty to keep you
busy. Of course I have no guarantees
any of them will work or be bug free,
but many come with source, so you can
play with them.

All the programs on the CDROM are
available on the Internet or BBSs'. Try
our BBS or web site for a start, but
Walnut Creek and Oakland Internet
sites also have the same programs from
the CDROM. The TClHome Page has
listings of other support locations and
a few good nights following those
threads should provide more support.

An Option

On our BBS is Brad Rodriguez's

31

Camel Forth. I have used his 8051
version and was very happy with the
easy setup needed. I know of several
other Forths' that you might seek in
place of his. EFORTH is very popular
for what you are doing, and the major
versions are intended to be assembled
using the PC DOS's MASM. MASM
is a MACRO assembler and the cross
assembly is done using tons of MAC
ROS. Following the code is very hard,
but several of us have ported it to nor
mal assemblers. I did one for the 68K
and the FIG Internet site should have
the others.

The advantage of using these ROM
based Forths is the ease with which
they can be ·ported. For Brad's 8051
code I added two lines of code for the
serial I/O (I was using RS485 and
needed to toggle the TX/RX driver
chip) and changed a few equates that
pointed to the RAM space. I assembled
it, burned the ROM, and was running
Forth and checking out the system. At
this point your students could start
generating and testing code to talk and
do the robotic operations.

With this type ofsystem, you can pretty
much learn by trail and error using a
book like "Mastering Forth" (got my
last copy for $3 at a discount book
store). It will help if they understand
some of the hardware and especially
talking to I/O devices. Even if Forth
is not used, knowing how ports talk is
very important. Before we had embed
ded Forths, MONITOR programs were
the only tools available.

MONITORS

For years I used ROM based MONI
TOR programs that allow you to load
programs, single step through pro
grams, disassemble code, and make
patches in RAM. They seldom have the
higher level feel you get from Forth,
but once learned you can do as much
with them as with Forth. A few tricks
are needed, such as having the ROM
write a few jump to RAM and RE
TURN code sections. Often I put whole
jump tables in RAM so you can patch
around a bad section of code.

You will also find with the 8080 CPU,
that it is missing a few key instructions
that make life easier and monitors hard
to use. With Z80's, you can load the C
register with a port address from the

32

command line and then do a read or
write on that port. To do the same with
an 8080 requires setting up a RAM lo
cation with read and write to port op
eration. You then need to change the
port address (written into RAM) before
calling that location. These are all
things you need to look for in a good
monitor program. I saw several moni
tors listed on the CDROMS.

High Level Languages

At this point we need to review the
normal method you might use with C
or the Pascal you used in the past.
Remember that we are talking about
embedded or ROM based operations
here, no disk files sitting out in the real
world. So what are the steps that I have
done for many years, well first offwrite
the code in some editor program. Next
is compile it, still on the host system.
Follow that by burning the ROM (and
yes about lout of 5 times the ROM
will fail for good). Put it in the sys
tem, test, find errors, patch around if
it also contains a monitor, document
errors, start again.

There have been a number ofenhance
ments over the years that reduce the
pain of doing the above steps. ROM
emulators are by far the best change,
as they can make getting the code into
the machine a few keystrokes away.
Some ROM emulators will allow you
to edit the code while the machine is
running. I built one myself about ten
years ago for my SIOO system. My
design limited the operation to about
2 feet of cable, but the newer units can
be strapped on the machine and a long
serial cable used to down load the code.
Cost is about $100 and up for the
larger RAMIROM units. Also some
EPROM burners have an emulator op
tion.

The latest variation on this theme is
tethered systems. I have used a few
Forth systems this way and am aware
of a few high level C cross compilers
that work this way as well. The idea is
a lot like using ROM emulators, in that
the code is down loaded into the ma
chine and the monitor resides on the
host. Often a small program is placed
in ROM and all the load memory,
single step, debug features are run re
motely with embedded commands. You
never see what is actually passing back
and forth, all you get are screens of

registers or program status. They can
make the process simpler and faster
and with higher level languages, they
isolate you somewhat from the hard
ware. The Forth's start at about $100
to $300 depending on features, while
the C systems start in the $500 and go
to $5000 and more.

CPIM on PC's

You mentioned that your old CP/M
system died some years back. There are
ways to use your PC Clone to run CPI
M and re-use all those old programs.
Many of TCJ readers have stopped fix
ing their CP/M systems and gone to
MYZ80. This public domain program
works great and tied with 22DISK can
be used to read and run most CP/M
programs. 22DISK can read most 5
inch disk formats on your PC and load
them on the hard disk. You run
MYZ80 and import the programs from
the PC's hard disk, into the MYZ80
disk structure.

The are so many features and options
that you really need to just get the pro
gram and try it. If all your programs
are on old 8 inch disks, there are sev
eral persons who can convert them to
PC disks for you. Alternately, you can
get 1/0 cards that will allow using ac
tual 8 inch drives with 22DISK. I will
be trying out an adapter card later to
see if 3.5 inch drive cables can be used
with regular AT disk controllers and
8 inch drives (I think so).

Once you get MYZ80 up and running
(there are other similar emulators on
the CDROM's) you can run your old
programs, but you will still be in the
compile burn output mode. Several
Forth's for CP/M are available, small
C, and even BASIC source code you
could put in ROM.

Last Word

My main concern with any solutions,
even MYZ80, is not getting hung up
in the tools, but making sure you spend
all your time doing the robotic project.
I got into computers in order to solve
solar energy problems. Needless to say
I have not run a solar program in
years!

My order of preference would be us
ing Forth in ROM, followed by assem
bler, and begrudgingly using C. The

The Computer Journal I #79

Forth would allow me to build the project slowly with work
ing routines. The assembler would be built on top of a moni
tor that would contain simple robotic commands, such as
RF4 (Robotic debug operation, Forward move, 4 steps). I
could then write the program that just called all the same
routines resident in the monitor program.

I list C only as a last resort after experience with a com
mercial version. We bought it thinking it would help us get
fast C code for an 8051 project. It came with sample code,
but the sample was for some math options, not talking with
the I/O. The only code provided that could be used for a
guideline or base to start from, was the Intel 8051.asm moni
tor programs (available from many BBS's). What we wanted

was to see how they might initialize and do serial I/O with
their C code. I have been told by others that you typically
do all the normal stuff in assembler and leave the C coding
for the more difficult math and text string problems. That
being the case we decided to just hack our normal assem
bler source into the new project, since we knew it worked.
We never did have any time to just play with the C side of
the package.

Well Arlyn, that pretty much sums up my choices and op
tions for solving your problem. I would like to hear what
you actually end up doing, and especially more about the
Odyssey program.

#define Iport OX03F8 f* the parallel port address *j

main(void)
(

This is a simple assembler case statement. We get the value
and change it to an offset into the table of procedure ad
dresses. Most CPU's have some form of indirect program
jump. That means if I load a registers that points to some
place in memory, the CPU will then fetch or retrieve what
is in the location and use it as the location to start reading
instructions at next.

High level languages all have case statements and C is no
different. You hope the resulting underlying asm code pro
duced by the complier will be very similar to the above. I
have looked and found that not to be the case, but under
stand that considerable changes have taken place in the last
few years to improve C's output. This is how I might do it
in C.

Program Snippets

To help see how you might handle a simple problem with
the three language options I presented, I decided to use last
issues traffic signal Forth Day Lunch contest as the basis
for some code samples. In issue #77, my Computer Corner
explained about using the PC parallel port to emulate a set
of traffic signals. LEDs were used for the traffic lights, and
push buttons acted as vehicle sensors.

We were able to move quickly from reading and writing the
parallel port to turning on the lights in various sequences.
We hit a stumbling block when it came to the vehicle sen
sors. Based on the sensors output, you do nothing, or start
the change from N/S being Green, to the E/W changing to
Green. We first tried combining the testing within the chang
ing routines. That proved very problematic and we ran out
of time before a good solution was found.

Since then I have decided the program should start up and
drop into the read sensor routine. If sensors are not active,
it defaults into the N/S is green, EIW is stop (was specified
in the design to do that on power up). Then based on the
sensors, you have one of sixteen options that determine what
happens next. If N/S is green, and a vehicle arrives at the
East sensor, you need to start the change from N/S to E/W
option.

To simplify the procedures, only two sub routines are needed,
changing from N/S to E/W, and changing from EIW to N/
S. All other procedures are just to determine if the change
is needed or not. The vehicle in the East lane, has the port
returning a 40hex value. So one way ofdoing the main loop
then is a simple case statement on the 16 possible options
(16 being all four sensors have cars sitting on them).

Pseudo Assembler

Main_Loop:

INA PORT S
AND A,OF~H
SHR A,2
LOB TABLE

ADD B,A

LPC (B)

;
TABLE:

OW ONE

OW TWO

OW THREE

all sub programs jmp back to
here

get status port value
only want top bits
shift it right 2 places FO = BC
load BIC register with pointer

to table
adds A or offset into table
with table

load and jump to program
pointed to by what B points to.

contains addresses of each sub
program

will put address of routine
one here
if bit two is on, this
procedure is run

same through all 16
options .

The code for the 40hex option would go something like this,
see ifN/S is green, ifyes do change, else must have vehicle
waiting to make left turn, start left turn option, else do noth
ing. Ofcourse some have special considerations like all four
have vehicles waiting. What I have provided is how I would
read the parallel port, mask the bits I want, and then do a
simple case statement. I'll start with the assembler first since
it is the simplest.

The Computer Journal / #79

int nStatus;

while(((nResult = inportb(lport)) & OxFO) != 0)
/* do this as long as something other than 0 is returned * j

switch (nStatus) {
case Ox10: f* one car waiting in North lane *j
{ f* one case code goes here ... *j

}
case Ox20: f* case two .

...... through 16 cases '"
default:
{ f* got garbage data just loop OJ }
}
endwhile

33

The last option is using Forth and three ways are possible.
Some Forths come with case statements, most do not. Most
can do CODE or assembly in line and thus the first example
could be used pretty much as is. Normally some basic loop
test repeat operation would be chosen and is what I have
provided as an example.

HEX / means aU numbers are in HEX format
: SIGNAL (-) / means no parameters passed

DO_INIT / call this to setup flags/ports ...
BEGIN / start loop we Dever exit
378 PC@ / read PC port hex 378 putting data on stack
OFO AND / want only top 4 bits
DUP / make stack's 1st and 2nd item the same

10 IF I testtop of stack to see if it is 10 hex
= DROP ONE I test if yes, ifso skip top item and call

lONE
ELSE DUP 20 IF = DROP TWO / ifnot 10 see if20 hex
ELSE DUP 30 IF = DROP THREE / repeat same for all cases

........ / will have 15 ELSE's and
THEN THENTHEN /16 THEN's for closure

/ of IF-THEN cases
AGAIN; / loop back up to BEGIN and repeat test/cases ...

You test this program by typing SIGNAL at the OK prompt
when running FPC as we did at Forth Day. If you analyze
the way FPC does case statements, you will see that the
underlying code is the above.

I searched myoid copies of these CDROMs. Please contact
Walnut Creek CDROM for latest prices and current version
number. This list is NOT complete, I passed over many other
good files.

Simtel Disk2\cross assemblers\

CUG276 - Z80 and 6804 cross assemblers
New cross-assemblers (updated CUG267) for Z80 and

6804 processors.

C USER Group CDROM
CUG267 - 8085, 2650 & S6 Cross Assemblers
Cross assemblers for Intel 8080 and 8085, Signetics

2650, and SGS S6 micro processors.

as## 107.zip
asem5111.zip
asref.zip

assemblr.zip
embedpc.zip

epasm13.zip

motoasms.zip

pcmac.zip

ps##a12.zip
svasm02.zip
tasm276.zip

uasm.zip

xasm220.zip

Assemblers for many CPU's
Cross assembler for the MCS-51 family
Reference manual for MOTOASMS
cross assembers

Generic 6502/6803/8085 assembler
Tools & source for embedded PC
applications

Assembler for Intel 8749 & other
EPROM chips

Motorola 6800101104/05109/11 cross
assemblers

Two-pass symbolic cross assembler,
w/linker

Psuedo Sam assemblers for many CPU's
Cross assembler for 6502 and 65C02
Table-driven cross assembler, for many
CPUs

Cross assembler for 8051168051Z8,
wl'C'src
Twelve cross assemblers (65xx, 68xx,
80xx)

68emlO.zip

. mcxllvl5.zip

myz80111.zip

s48vlO.zip

sim6822c.zip
v2080j88.zip

v20boot.zip

z80mu52b.zip

zsim24.zip

systems. SYDEX
6800 emulator for DOS, includes a
realtime OIS

MC68HC II MicroController multitask
eXecutive

Simeon Cran's Z80 CP/M Z-System
emulator

Full SCreen simulator for 8048/49150
micros

Motorola 68HCII uController simulater
Run CP/M-80 programs on system with
V20 CPU

Turbo Pascal source code for V20 CP/M
emulator

CP/M (Z80 processor) emulator for
MS-DOS

Z80 emulator + CP/M-80 BIOS to run
CP/M

Simtel Diskl\Forth
eforth.zip Ting's '86 portable eForth, ROMable,

wlasm src
f83a1b.zip 8080 Laxen & Perry Forth83,block

oriented

Simtel Disk2\ASMUTIL
80x0393.zip ASM snippet collection from 80XXX

FidoNet echo
xlt86.zip 8080 to 8086 ASM translater,

wiASM source

Simtel DISK2\PGMUTIL
mide25.zip Devlp envirn for Arizona Microchip

16Cxx pgmrs
pcrobl41.zip Learn programming by writing robot

programs

Simtel Diskl\Emulators
22ncel42.zip Z80 CP/M emulator for MS-DOS

34

CUG284 - Portable 8080 System (JUG070)
8080 interpreter in C for embedded 8080 & CP/M-80.

CUG284.01-BASIC.ASM source
Palo Alto Tiny BASIC. Stand-alone BASIC ported to

8080.

CUG292 - ASxxxx C Cross Assemblers
Collection of cross assemblers in C for 6800 (68021

6808), 6801 (hd6303\ 680~ 6805, 680~ 6811, 8085
(8080), and z80 (hd64180).

CP/M CDROM

The CP/M has assemblers, disassemblers, and Pascal and
'C' compilers for the 8080/85 and Z80 CPU's. Most if
not all of them run under CP/M on machines like
Kaypro's and other older machines.

The Computer Journal I #79

Small System Support
by Ronald W. Anderson

C Class Notes 7 - Odds and Ends

There are several features of C that we haven't talked about
yet. This time there won't be an example program because
there are too many things to try to include in one program.
Next time we will wind up the Class sessions on C with a
rather concise but useful C program. Meanwhile let's cover
a number of small points.

Structures and Unions

We have discussed variables and arrays of variables several
times. There are still other more complex ways to store
variables than arrays. First there is a multi-dimensioned
array that can be thought of as an array of arrays. For
example if I were writing a screen editor a screen might
consist of an array of lines, while a line is an array of
characters. I might describe this arrangement as:

char screen_page(25)(80)j

That is, screenyage is an array of 25 arrays of 80 charac
ters each. We can go beyond this, however. Suppose we are
writing a program to hold information for an address/phone
·book.

II defines a new data type person_info
struct person_info {

char name [40) ;
char address1(50)j
char address2(50)j
char city (25) ;
char state(3);
long zip;

}

II declares an array records[) of structures
II of type person_info
person_info records(100);

record[O).name = "Dave Lesnekowiak";
record(0).address1 = "681 Airport BlVd.";
record(0).address2· "";
record[O).city = "Ann Arbor";
record[O).state = "MI";
record[O).zip • 48108; IICanadian zips are strings

We defined a structure data type person_info. We then
declared an array of dimension 100 ofdata type person_info.
Then we accessed each element of records[O] to put infor
mation into it. With what you now know about C you can
see that it would be easy to write a program to prompt a user
to enter name and address information for a number of
people, perhaps for a personal phone directory.

The Computer Journal / #79

We could write a program to search the array for a name or
city or zipcode. We could write a program to find a record
based on a name match and let us modify it, and lastly we
could write a program to go through the array and print a
nicely formatted name and address list. Of course we might
want to add a phone number item to the person_info defi
nition.

Structures like this (called records in Pascal) are used in
database systems and in a lot of other applications. If you
have a pointer to a structure you use a little different syntax
to access a part. *ptr->zip gets you the zipcode part of the
sub record if ptr is pointing at the structure in question.
Note that the symbol ".>" is a compound one made of the
two ASCII characters "." and ">".

Unions

A union is a collection of different variable types occupying
the same space. One is not required very often but they can
be very useful. The tutorial program gives a silly example
of the use of a union. It shows different data types occupy
ing the same space.

union stuff
{

char c;
int i;
float f;

We need to realize that char occupies one byte, int 2 and
float 4. Why you would want to overlap different types in
normal programs is beyond my comprehension unless you
had defined a large array and wanted to use the same space
later for two smaller ones. there are other and better ways
to handle that sort of situation in C. The tutorials and books
all say that you have to remember what is stored in a union
so you don't, for example store a character in this case, and
then try to access the integer. I've used a union like this:

union mathstuf
{

unsigned char byteparts[81;
unsigned int wordparts[41;
double value;

}

Now you declare a variable of type mathstuf and you can
store a double there and then by means of the char or int
array access various parts of it. I've used this to access the
exponent of a double for example to divide the exponent by
2 as a step in writing a square root function. I also used it

35

to transform an 8 byte real variable representation from an
old 6809 BASIC into a standard IEEE double representa
tion when I did some programs to transport old 6809 data
files to a Pc. In these present days of multi-megabyte
memory space, I don't see any reason to try to save a few
bytes by overlapping variables. Incidentally ifyou name the
structure or union as shown here you have declared a new
data type, in this case "mathstuf'. They you can declare
variables of the type mathstuf. If you omit the name, called
a "tag" by the authors of C, you can put a name directly at
the end of the declaration (after the ending curly brace) and
you have defined a variable that is a union that contains the
types of variables that you just defined, but you can only
have that one variable. This is true of both struct's and
unions.

The names red, yellow, and green are assigned the integer
values 0, 1, and 2 respectively unless you initialize them
with a different integer value. You could accomplish ex~

actly the same thing as follows:

jdefine red 0
jdefine yellow 1
jdefine green 2

int signal
signal = green;

This seems to me to be an attempt to duplicate the same
feature in Pascal. I can't imagine any respectable C pro
grammer using it much. It has the same shortcoming as the
Pascal version:

DOl Limitations

enum traffic_light { red, yellow, green}

You can later deallocate a big block of memory or when you
exit the program it is done automatically. To use this func
tion you have to include the header file "alloc.h". NOTE:
what I've said in the above paragraphs is true of Borland C
and their Turbo C. Microsoft may use some other name for
the function that allocates large memory blocks.

Enumerated Data Type

An enumerated data type may be declared to be used to
make a program clearer:
NOTE: This is a new feature in ANSI C. It did not exist in
the original K&R version.

This will nicely print "2". Since day_of_week is an integer
for all practical purposes you can't print the day of the week
from this setup. You can define a two-dimensional charac
ter array of strings containing the names of the days, and
use day as an index to select them, for example, but you
might just as well use the day number in the first place. The
above program segment will print the number 2, not the day
name tuesday.

If this usage looks like an "artifact" to make the program
read in a more "English like" manner to you, I agree. I
would tend to get the month from the month number rather
than fooling around with an enumerated type, but suit
yourself.

day_of_week = Tuesday;

printf("today is %s\n",days[daLof_week)j

Assembler

char *days[) = {
"SundaY","Monday","TuesdaY","Wednesday",

"Thursday", "Friday", "Saturday" };

This will print "Tuesday". Note particularly that the array
days is an array of pointers to character type. Note also that
days[O] points to "Sunday" etc. These are in alignment with
the enum declaration above, or the scheme wouldn't work.
You can imagine a similar scheme for printing the names
of the months given the month number. In this case the first
name in the array has to be "dummy" or "error" since we
don't start counting months at month zero.

enum days { sunday, monday, tuesday, wednesday,
thursday, friday,
saturday }

days day_of_weekj

day_of_week = tuesdaYj

printf("today is ... %d\n",day_of_week);

I have a fan folded card in front of me, labeled MC6809 8
bit microprocessor Reference Card. It came as part of the
package with my 6809 processor board from SWTPc in
1976 or so. The card has been shrinking ever since (or could
it be my eyesight is getting worse as I age?). At any rate, I
am sending my stained and aged copy to TCJ in the hope
that it will be made into a "Centerfold" in the future. I think
with a little bit of luck it could be copied it directly (hope-

II defines a variable called
II signal of type
II traffic_light

While I realize most of the readers of this will be using C
on an antique computer of some sort, I thought it would be
well to include this infonnation anyway. It does apply to
those antique XT machines. MS-DOS has some memory
management limitations. Though the processors since the
386 are able to address a large memory space, MS-DOS still
has some hangups with that. The maximum size a data
structure can occupy is 64K unless you do some tricky
things. The C compilers for the PC have a number of
"memory models" that let you have larger data areas or
larger programs but the limitation still remains in them that
you can't have one data item (array) larger than 64K.

You can only get around this limitation by using what is
called a "huge" pointer and allocating memory after the
program is running, through the use ofa memory allocation
called fannallocO. You tell fannallocO how many bytes of
memory you want and it returns a pointer of type void (it
can point to any type ofdata). You cast the pointer into the
appropriate type and you can access the large block of
memory as though it were a big array using a long for the
array index. I've done just that in the editor PAT to get a
200,000 character edit buffer. If fannallocO can't allocate
enough memory it returns a NULL so you can test to see if
the allocation was successful.

traffic_light signal;

signal" green;

36 The Computer Journal / #79

fully making it a bit larger rather than shrinking it further).

This reference lists the 6809 instruction set alphabetically
by mnemonic from ABA (Add B to A) to TST. Each entry
shows all the applicable addressing modes and the hexa
decimal op code for each. It also indicates how many bytes
the instruction takes and how many clock cycles it takes to
execute, as well as which condition code bits it affects in the
condition code register (CCR). For example a TSTA in
struction "tests" the contents of the A accumulator and the
card shows that it sets or clears the Negative and Zero flags
according to the data in the accumulator. It unconditionally
clears the overflow bit, and it doesn't affect the carry and
half carry bits. We haven't talked much about the condition
code register yet. The Half carry is used in doing binary
coded decimal arithmetic. The reason we haven't gotten
into these just yet is that they work more or less automati
cally. The branch test instructions use them. DECB fol
lowed by BNE '" is an example. DECB decrements the
contents ofB. When it reaches zero the zero bit of the CCR
is set. The BNE instruction looks at the zero bit and branches
as. long as it is a zero (indicating the contents ofB resulting
from the DECB are not zero). When DECB results in B
containing zero, the zero bit is set to I and the BNE test
fails.

Maybe it is time to list the normal addressing modes of the
6809 and discuss them one by one. All of these modes are
different ways of accessing memory except one, called the
inherent mode. The inherent mode deals with addressing
that is defined by the mnemonic. For example ABX is the
instruction to add the contents of the B accumulator to the
X register. No memory is involved. Another example is
INCA or INCB, causing incrementing of the value in the
register. Let's now look at the other ways of accessing
memory.

Direct:

This mode accesses the Direct Page as defined by the con
tents of the DP register in the processor. If not changed DP
initializes to zero on power up.

LOA $34

Loads accumulator A with the contents of memory location
$0034 in this case. If the program contains an instruction
to set the DP to $11, for example. LDA $34 would access
memory location $1134. The direct page was used a lot in
small programs and is useful to keep the code size small,
but in a larger program, for example an editor or text
processor in which there are many variables, most program
mers ignore the direct addressing mode and simply consider
everything as needing the next mode:

Extended:

LOA $1234

Loads accumulator A with the contents of address $1234. If
DP contains $12, the direct addressing instruction LDA $34
would acomplish the same thing using one less byte of
memory for the instruction.

The Computer Journal / #79

Indexed:

LEAX #$1234
LOA O,X

This again would load A with the contents of memory
location $1234. The usefulness of indexed addressing is in
the case of needing to access a sequence ofbytes in memory.
If you had set up an array of bytes in memory you could
access element 4 of the array with:

Indexed with Offset:

LOA 3,X

This mode adds the offset (3) to the address contained in X.
It would access address $1237 in this case.

We can also use the contents of one of the accumulators as
an offset.

LOB #3
LOA B,X

This has the same effect as LDA 3,X. Of course we can
calculate an array offset and have the result in A or Band
then use that to load a value. It is a little more flexible than
using a constant offset.

We can also bump along a string of addresses in memory
using the:

Post Increment Indexed mode:

LOA ,X+

This instruction in the present case would load A with the
value in memory location $1234 and then increment the
contents of X to $1235. If we have a text string stored in
memory, for example, this is a nice way to go through a loop
to output it.

MESG FCC /Hi There/,O

LEAX MESG,PCR point x at the message string
BSR PRTT

PRTT LOA ,X+
BEQ OONE
JSR PUTCHR
BRA PRTT

OONE RTS

Note that if the offset value is zero you can use either O,X
or just plain ,x. Post increment does not work with an
offset. That is, you can't use 4,X+.

Ifyou are bumping along loading a 16 bit value you can use:

LOO ,x++

This increments X by two bytes as you need to do if you are
loading 16 bit values into a register. The assembler doesn't
take care of this for you. You must use the instruction
properly for yourself.

In addition there are instructions for going backwards in
memory. The Post Increment instructions use the value in

37

X and then increment it. the Pre Decrement instructions
decrement the value in X and then use it. The pre Decre
ment syntax is:

,'X and ,-X

Indirect addressing:

POINTR FOB $1234

LOA [POINTRj

This instruction says to use the contents of the variable
POINTR. as a pointer (in the same sense as the pointers in
C that we have been talking about for several issues now).
Again in this case the result would be to load A with the
contents of memory location $1234.

Immediate:

Lastly we must not forget the immediate mode.

LOA #$20

This puts the value $20 in the A accumulator.

Everything said above about the X register applies equally
well to the Y register, the U register or the S register,
though the S register (the system stack pointer) is usually
left alone by the programmer since it is automatically used
as the subroutine return address stack when you do a JSR or
BSR instruction. That is, the processor puts the return
address on the stack and uses it when it encounters an RTS
instruction.

All of the indexed addressing modes can be made indirect
too:

LDA O,X loads A with the contents of memory
location pointed at by the contents of the X
register.

LDA [O,X] loads A with the contents of the memory
location pointed at by the contents of the memory
locations pointed at by the contents of the X
register.

This is a second level pointer system equivalent to the
double pointer in C that we have not yet talked about. You
can think of the contents of X as a pointer to a pointer to the
value you are going to load in the A accumulator.

Don't fret over this too much. It is not used very often. In
fact if you are writing programs in assembler you can
simply not use this mode at all. I find that most assembler
programmers tend to use a subset of the instruction set
(probably too small a subset).

There is one other indexed mode we have used when we did
a position independent program, the program counter rela
tive mode.

VARIBL FCB 'A

LOA VARIBL,PCR

38

The label VARBIL is equal to the address to which the
program counter is pointing when VARBIL is defined. That
value is a constant. The instruction causes the processor to
calculate the offset from the instruction LDA VARIBL,PCR
to the place where VARBIL is defined, and to use that offset
to get to the variable. Because of this, it doesn't matter
where the program is loaded in memory, the offset remains
the same so the instruction works regardless of the "posi
tion" of the program in memory.

Incidentally, though you can use either Y or X as an index
register, the instructions that use Y overflowed the original
single byte instruction op code set so that the Y register uses
a special "post byte" to identify it. Programming with the Y
register is therefore less memory efficient than using the X
register. Still, there are some nice uses of both X and Y
registers, for example, to move the contents of a block of
memory from one location to another:

LEAX SOURCE,PCR
LEAV OEST,PCR
LOB COUNT

LP LOA ,X+
STA ,V+
OECB
BNE LP

If you are certain that the move is an even number of bytes
you can move two at a time:

LEAX SOURCE,PCR
LEAV OEST,PCR
LOB COUNT
ASRB divide count by 2

LP PSHS B
LOO ,X++
STO ,V++
PULS B
OECB
BNE LP

This of course runs considerably faster since the loop must
be executed only half as many times as in the first case. Of
course there is a little more overhead since the D register
consists of the A and B registers joined, we have to hide
away the loop count on the stack and get it back in the B
register to manipulate it. When you push something on the
stack and then later pull it back off you must be careful.
This is particularly true if you happen to have the code in
a subroutine. Too few PULs will leave a data item on the
stack in the way of the return address, and too many PULs
will remove part of the return address. You could alter
nately set up the user stack at some address and use it to
save the contents of B temporarily. You can also use a
memory location but generally pushes and pulls are faster
than writing and reading a memory location.

It is possible to write a general subroutine that can see if the
number of bytes is even or odd, and to handle the last (or
first) byte differently if the numnber is odd. In a case where
you wanted to move a lot of data around in memory as fast
as possible, such a subroutine would be desirable and would
enhance the execution time of the program considerably.

I recently received a letter from a reader asking for recom
mendations on books about 6809 assembler programming,
"prefferably still in print". That is a big order. I ofThand

The Computer Journal I #79

know of none still in print. In fact my library is wiped out.
I've either loaned them to friends or left them at work to be
borrowed by others. Osbourne published one that was ad
equate but not very well done in my opinion. I remember the
very complex looking photo on the front cover (of the layout
ofa microprocessor chip) that gave the impression of a very
complex subject. The content was there, however. There
was a book by John Wakerly published about ten years ago,
covering a number of different processors. This one may
still be in print. There was and is the Motorola program
ming guide (a book supplied by Motorola to their custom
ers), and the minimal information that came with various
assembler programs for the 6809. There is the "Advanced
Programmer's Guide" supplied by SWTPc first at extra cost
and later, I think, as a part of FLEX when it was purchased
either from SWTPc or from Technical Systems Consultants.

Miscellaneous

Well, I guess this time the Assembler part of the column has
been reduced to bits and pieces rather than an example
program. I am more or less stalied for an example that is
more complex than what has preceded and not so complex
that I would have to spend a month of evenings to work it
out. I have neither the time nor the inclination to get into
a long project right now. Our daughter is getting married
about 8 weeks from now, probably long before this will be
published, but anyway, we are in the midst of finding
organists, vocalists, photographers, caterers, supplies such
as tablecloths, napkins, cups etc. for the reception. Fortu
nately our daughter is an organizer and she has a good bit
of things already worked out. We have invitations and our
half of the guest list pretty well worked out.

Troubleshooting Hardware

I enjoyed Bill's Article $10 PC in issue 73. Let me see if!
can add some advice for troubleshooting an old computer
you might have bought like Bill's PC. First, remove fasten
ing screws so you can remove the cover. Most covers slide
off the front ofthe case. Screws that hold the cover in place
are generally run through the back of the case into a flange
that is part of the top, so remove the screws along the top
edge of the back and generally in the two bottom corners.
Don't overdo it and remove the screws that hold the power
supply to the back of the case.

Once the case is off you are ready to start troubleshooting.
Don't worry about shock hazards contrary to printed in
struction and warning labels on some ofthese units. The XT
has all the powerline connections confined to inside the
power supply box. Even the switch is mounted on the box.
The wires that come out to supply the power to the disk
drives and motherboard have only low voltages on them. If
the computer is a bit newer and the power switch is mounted
on the front, you will find a cable running from the power
supply box to the switch. AVOID THE BACK OF THE
POWER SWITCH. Most of them have plug on "AMP" lugs
and the wires are usually well insulated with plastic sleeving.
If in doubt unplug the computer and wrap the back contacts
of the switch liberally with plastic electrical tape so there is
no bare metal exposed. Now you are safe and you can
reconnect the power.

The Computer Journal / #79

Assuming you have a monitor connected to the computer
and that it doesn't have 'words' on it after turning the
computer on, the first thing to check is the power supply. Is
the fan running? If it is, the 12 volt supply is probably
working. Ifyou have a voltmeter you can check the voltage
at one of the disk drive power connectors. It is easiest to
check one that is not connected to a drive. The two black
wires in the middle of the connector are "ground". Connect
the negative or common lead of your voltmeter to either of
the two black wires. You can simply insert the probe or clip
on the end of the voltmeter lead into the connector. You
might have to hold it there. Now you should measure +5
volts DC on the RED wire and +12 volts DC at the yellow
wire. If either is not there don't panic just yet.

GENERAL RULE: DON'T PLUG OR UNPLUG POWER
CONNECTORS OR CIRCUIT BOARDS WITHOUT FIRST
TURNING THE POWER OFF.

First disconnect the disk drives including the hard drive, by
unpluging the power connector on each. Then power up
again and measure voltages. If the voltages are now correct
(wait a few minutes for the power supply to recover from its
overload condition) you have a bad drive or a weak power
supply. Power down and reconnect the floppy drive(s). Power
up and if power is still OK the hard drive is the culprit. If
power is bad again, unplug the floppy drives one at a time
until the fault clears. The last drive disconnected was
obviously the culprit.

If power is still bad with drives disconnected, power down
again and connect one floppy drive, but now remove the two
power connectors from the motherboard. Power up again
and look for the two voltages. If they are now good, the
problem is in the computer or I/O boards.

Power down again and reconnect the power to the
motherboard. The two connectors are supposed to be uniquely
coded so they can't be plugged in wrong, but most manufac
turers don't bother with this. The connectors go so that the
black wires are together and in the middle of the power
connector on the motherboard.

Now before powering up again remove all the I/O boards
from the motherboard, i.e. the disk controller or controllers
(the boards that are connected by ribbon cable to the hard
and floppy drives), any serial or parallel port boards or
game port boards. Leave only the monitor adaptor board,
the one to which the monitor is connected. Now power up.
If the supply voltages are now good, one of the boards you
have removed is bad. If not, chances are the video board is
bad. Power down and remove it and retest the voltages. If
power is still bad you have a bad motherboard.

If the system comes up with only the video board and
monitor connected, plug in the I/O and disk controller
boards one at a time (power down please) and see if the
video is still there. If you find a board that causes the video
to go away, it is bad and needs to be replaced or repaired.

If you can get the floppy controller back into operation and
the video remains, you ought to be able to boot from a
bootable floppy. You can test the hard drive if there is one

39

by changing to drive C. After booting from a floppy type C:
and see ifyou get the C> prompt or an error message saying
the drive or controller is bad.

You get the idea. The name of the game is divide and
conquer.

If you can't get video you have a problem that is harder to
track down. Turn power on and see if the hard drive be
comes active. The usual sequence is that the hard and
floppy drives are each accessed briefly. A hard drive goes
through a little self test routine on power up. If it is going
to try to boot, there will be a single BEEP from the speaker
and then the hard drive will access and shift from track to
track. That indicates that the system is booting but you have
no video. Either the monitor or video adaptor is bad. It is
time to visit a friend and try another of each. CGA boards
can be had for $50. So called Multi-IO boards that will still
run on the XT bus can be had for $12 or so. They have one
parallel port and two serial plus a game port. Don't get the
one with an IDE interface on it since that is excess baggage,
and an IDE drive won't run on an XT or an early 286
system (without a BIOS upgrade that costs more than the
computer is worth).

If you hear multiple beeps from the speaker, it is possible
the system is trying to tell you something. The Power On
Self Test (POST), if it can't access a monitor or if it can't
get far enough in its testing to be able to write to the
monitor, will send out a "beep code" that is meaningful.
Some codes mean the memory is bad etc. I seem to be
running out of space here, so I will try to include the beep
codes and the error codes that are shown if the system gets
as far as writing to the monitor. The list is long and very
helpful.

One more bit ofadvice. It is OK to mix and match systems,
but you need to do something irrational sometimes if you
do. You can run an old XT type hard disk controller in an
AT (286 machine) as would be the case when upgrading the
motherboard. If you do this, you must understand that the
old XT controller boards contain a BIOS chip that basically
runs them. Ifyou plug the controller and drive into an AT
you have to go into the CMOS setup mode (or use the
supplied CMOS setup program) to tell the AT that the hard
drive is not installed. The XT controller bios runs the drive
and it doesn't work ifyou tell the CMOS that it is there! If
you have an AT type controller you have to tell the CMOS
setup all about the drive.

!fyou want to upgrade a 286 machine to run an IDE drive
it is not difficult. There are numerous ads in "Computer
Shopper" for BIOS upgrades. First, if you can, boot the
system and look at and write down the numbers that appear
at the bottom ofthe screen on boot. These numbers identify
the BIOS that is installed. The supplier will ask you for
them. You may find out that the upgrade will cost $70 or so,
and you may want to think about it for a while, but in my
experience, I have never seen a really reliable MFM drive.
IDE drives simply are newer technology and are much more
reliable long term than the old MFM or MFMlRLL drives.
Strangely, though old RLL drives are less reliable than their
MFM counterparts (sometimes you can use the same drive

40

as either by using the appropriate controller), all IDE drives
use RLL encoding of the data since that gives a 50% in
crease in data capacity. The problem is apparently with the
hardware, not the technique.

Should you decide to go with the BIOS upgrade, the sales
person at the other end of the line will try to sell you an
upgrade to the keyboard portion of the BIOS as well, for an
additional $25 or 30. Considering that even after the ex
pense you will still have an old 286 system, this extra cost
is in my mind unjustified. I'd skip it (as I did when I bought
an upgrade for my first 286 system). When my ROM set
arrived, I plugged in the two (carefully so as not to bend any
pins). The computer came up with the new BIOS and it
recognized my IDE drive immediately. I did the high level
format and the system ran nicely.

Well, that is about it for this time. Next time I promise
example programs.

The Computer Journal / #79

II The TCJ Store II
Regular Items

Back Issues See page 44
All Back Issues of TCJ are available.

TCJ Reference Cards $3.00 + $1 S+H
So far, all we have is the Z80 Instruction Set card from
Issue #77. These are on heavier stock than the one sent
with the issue.

The next two items are Group Purchase Items. TCJ
doesn't have the resources to stock these for you, so we
have to collect a minimum number oforders before we can
provide these.

*GIDE kit~ $73
iilmann Reh's GIDE board was featured in several is
sues of TCJ. It is a 'Generic' IDE board for the Z80 that
plugs into the Z80 socket (you plug the Z80 back into the
GIDE board). This is still an experimenters kit. Sample
code and docs including the articles from TCJ are pro
vided, but you have to write your own BIOS routines.

CP/M CD-ROM $25 + $4 S+H
This is the Walnut Creek CP/M CD-ROM (normally
$39.95+S&H) with 19,000 files from Jay Sage, David
McGlone, FOG (First Osborne Group), the Beehive BBS,
the Enterprise BBS, ftp.demon.uk, and the SimTel20
CP/M collection from the Internet.

Special Items

We currently have two each of Tilmann Reh's CPU2.80
boards and the IDE boards that go with them. The
CPU280 was featured as the Centerfold in Issue #77 and
the IDE interface was in Issue #56. These are bare boards
and are not for the faint of heart. They are expensive and
the parts are hard to get. But they're fast.

*CPU280 bare board $150
Comes with docs and utility disk.

*IDE bare board $ 65
Comes with docs.

*CPU280 & IDE together $200

TCJ can accept credit card orders by phone, fax, or mail
or you can place an order by sending a check to:

The Computer Journal
PO Box 3900, Citrus Heights
CA 95611-3900
Phone: 800-424-8825 or 916-722-4970
Fax 916-722-7480 I BBS 916-722-5799

Include your shipping address with your check, and your
Internet address if you have one. For more info, contact
TCJ via E-mail attcj@psyber.com

The Computer Journal I #79

CP/M Kaypro Catalog

Upgrades
Advent TurboRom

K4-83 $35.00
K1 0-83 $35.00
Kx-84 $35.00

MicroCornucopia Roms
Pro 8 $35.00
884 Max $35.00
884 Max (Lo) $35.00
Character ROM $35.00

Add-ons
HandyMan $75.00

Disk Drives
Dual Density TEAC FD-55BV $15.00
Quad Density TEAC FD-55FR $15.00

Pair $25.00
5T-225 20 MByte MFM HD ??

Disk Controllers
WD-1002-05 HDO $75.00

Tech Data
Kaypro Technical Manual $25.00

Microcornucopia Schematics with
Theory of Operation

K-II/4 83 $15.00
K·1 0/83 $15.00
AII-84 $15.00
Any two $25.00
All three $30.00

Software
Advent Harddisk Formatter $25.00
TurboRom Applications Patches $10.00
TurboRom Developers Diskette $1 0.00
Kaypro 10/83 Tinker Kit $10.00
Kaypro 2,4/84 Tinker Kit $10.00
Kaypro CP/M 2.2H Autoload set

8 diskettes for K-1 0/84 $40.00
Other Stuff

Keyboards $30.00
Video - CRT and board $40.00
Kaypro Carrying bags $75.00

Kaypro machines
K-II, K-2, K-4, K-10 available in various condition.

* In Europe and particularly Germany, contact Tilmann
Reh for a current price and shipping. His email address is:
"TILMANN.REH@HRZ.uni-siegen.d400.de"

His postal address is:
Tilmann Reh
Autometer GmbH
Kaenerbergstrasse 4
57076 Siegen (optional "-Weidenau")
GERMANY

41

SUPPORT GROUPS FOR THE CLASSICS

Tel STAFF CONTACTS

TCJ Editor: Dave Baldwin, (916)722-4970, FAX (916)722
7480 or TO BBS (916) 722-5799 (use "computer", "journal",
pswd "subscriber" as log on), Internet tcj@psyber.com,
dibald@netcom.com. Also CompuServe 70403,2444.

TCJ Adviser: Bill D. Kibler, PO Box 535, Lincoln, CA 95648,
(916)645-1670, GEnie: B.Kibler, CompuServe: 71563,2243,
E-mail: kibler@psyber.com.

32Bit Support: Rick Rodman, 1150 Kettle Pond Lane, Great
Falls, VA 22066-1614. Real Computing BBS or Fax: +1-703
759-1169. E-mail: ricker@erols.com

Kaypro Support: Charles Stafford, on the road somewhere.
Email: aS73664.2470(73664.2470@compuserve.com).TO
has taken over Chuck's Kaypro parts and upgrade business.

S-100 Support: Herb Johnson, 59 Main Blvd. Ewing, NJ 08618
(609)771-1503. Also sells used S-IOO boards and systems. E
mail: hjohnson@pluto.njcc.com.

6800/6809 Support: Ronald Anderson, 3540 Sturbridge Ct.,
Ann Arbor, MI48105.

Z-System Support: Jay Sage,1435 Centre St. Newton Centre,
MA 02159-2469, (617)965-3552, BBS: (617)965-7046; E
mail: Sage@ll.mit.edu. Also sells Z-System software.

REGULAR CONTRIBUTORS

Brad Rodriguez, Box 77, McMaster Univ., 1280 Main St.
West, Hamilton, ONT, L8S lCO, Canada, E-mail:
bj@headwaters.com..

Frank Sergeant, 809 W. San Antonio St., San Marcos, TX
78666, E-mail: pygmy@pobox.com.

Tilmann Reh, Germany, E-mail: tilmann.reh@hrz.uni
siegen.d400.de. Has many programs for CPIM+ and is active
with Z1801280 ECB buslModularlEmbedded computers.
Microcontrollers (8051).

Helmut]ungkunz, Munich, Germany, ZNODE #51, 8N1, 300
14.4, +49.89.961 4575, or CompuServe 100024,1545.

USER GROUPS

Connecticut CP/M Users Group, contact Stephen Griswold,
PO Box 74, Canton cr 06019-0074, BBS: (203)665-1100.
Sponsors Z-fests.

SMUG, Sacramento MicrocomputerUsers Group, has disbanded
after all these years.

CAPDUG: TheCapitaI Area Public Domain Users Group, News
letter $20, Al Siegel Associates, Inc., PO Box 34667, Betherda
MD 20827. BBS (301) 292-7955.

NOVAOUG: The Northern Virginia Osborne Users Group,
Newsletter $12, Robert L. Crities, 7512 Fairwood Lane, Falls
Church, VA 22046. Info (703) 534-1186, BBS use
CAPDUG's.

42

The Windsor BuUetin Board Users' Group: England, Contact
Rodney Hannis, 34 Falmouth Road, Reading, RG2 8QR, or
Mark Minting, 94 Undley Common, Lakenheath, Brandon,
Suffolk, IP27 9BZ, Phone 0842-860469 (also sells NZCOMJ
Z3PLUS).

NATGUG, the National TRS-80 Users Group, Roger Storrs,
Oakfield Lodge, Ram Hill, Coalpit Heath, Bristol, BS17 2TY,
UK. Tel: +44 (0)1454 772920.

L.I's.T.: Long Island Sinclair and Timex support group, contact
Harvey Rait, 5 Peri Lane, Valley Stream, NY 11581.

ADAM-Link User's Group, Salt Lake City, Utah, BBS:
(801)484-5114. Supporting Coleco ADAM machines, with
NewsletterlBBS.

Adam International Media, Adam's House, Route 2, Box
2756, 1829-1 County Rd. 130, Pearland TX 77581-9503,
(713)482-5040. Contact Terry R. Fowler for information.

AUGER, Emerald Coast ADAM Users Group, PO Box 4934,
Fort Walton Beach FL 32549-4934, (904)244-1516. Contact
Norman J. Deere, treasurer and editor for pricing and newslet
ter information.

MOAUG, Metro Orlando Adam Users Group, Contact James
Poulin, 1146 Manatee Dr. Rockledge FL 32955, (407)631
0958.

Metro Toronto Adam Group, Box 165, 260 Adelaide St. E.,
Toronto, ONT M5A INO, Canada, (416)424-1352.

Omaha ADAM Users Club, Contact Norman R. Castro, 809
W. 33rd Ave. Bellevue NE 68005, (402)291-4405. Suppose
to be oldest ADAM group.

Vancouver Island Senior ADAMphiles, ADVISA newsletter
by David Cobley, 17-885 Berwick Rd. Qualicum Beach, B.C.,
Canada V9K IN7, (604)752-1984. dcobley@qb.island.net

Northern Illiana ADAMS User's Group, 9389 Bay Colony
Dr. #3E, Des Plaines IL 60016, (708)296-0675.

San Diego OS-9 Users Group, Contact Warren Hrach (619)221
8246, BBS: (619)224-4878.

The San Diego Computer Society (SDCS) is a broad spectrum
organization that covers interests in diverse areas of software
and hardware. It is an umbrella organization to various Spe
cial Interest Groups (SIGs). Voice information recordings are
available at 619-549-3787.

The Dina-SIG part of SDCS is primarily for Z-80 based com
puters from Altair to Zorba. The SIG sponsored BBS - the
Elephant's Graveyard (619-571-0402) - is open to all callers
who are interested in Z-80 and CP/M related machines and
software. Contact Don Maslin, head of the Dina-SIG and the
sysop of the BBS at 619-454-7392. Email: donm@cts.com.

ACCESS, PO Box 1354, Sacramento, CA 95812, Contact Bob
Drews (916)423-1573. Meets nrst Thurdays at SMUD 59Th
St. (ed. bldg.).

The Computer Journal 1#79

Forth Interest Group, PO Box 2154, Oakland CA 94621 510
89-FORTI:I. International support of the Forth language, local
chapters.

The Pacific Northwest Heath Users Group, contact Jim Moore,
1554 - 16th Avenue East, Seattle, WA 98112-2807. Email:
be483@scn.org.

The SNO-KING Kaypro User Group, contact Donald Ander
son, 13227 2nd Ave South, Burien, WA 98168-2637.

SeaFOG (Seattle FOG User's Group, Formerly Osborne Users
Group) PO Box 12214, Seattle, WA 98102-0214.

OTHER PUBLICATIONS

The Z-Letter - has ceased publication.

The AnalyticalEngine, by the Computer History Association of
California, 3375 Alma, Suite 263, Palo Alto, CA 94306-3518.
An ASCII text me distributed by Internet, issue #1 was July
1993. Home page: http://www.chac.org/chac/ E-mail:
engine@chac.org

Z-lOO Lifeline, Steven W. Vagts, 2409 Riddick Rd. Elizabeth
City, NC 27909, (919)338-8302. Publication for Z-I00 (an S
100 machine).

The Staunch 8189'er, Kirk L. Thompson editor, PO Box 548,
West Branch IA 52358, (319)643-7136. $15/yr(US) publica
tion for H-8/89s.

The SEBHC Journal, Leonard Geisler, 895 Starwick Dr., Ann
Arbor MI 48105, (313)662-0750. Magazine of the Society of
Eight-Bit Heath computerists, H-8 and H-89 support.

Sanyo PC Hacken Newsletter, Victor R. Frank editor, 12450
Skyline Blvd. Woodside, CA 94062-4541, (415)851-7031.
Support for orphaned Sanyo computers and software.

the world of 68' mil:ros, by FARNA Systems, PO Box 321,
Warner Robins, GA 31099-0321. E-mail: dsrtfox@delphi.com.
New magazine for support of old CoCo's and other 68xx(x)
systems.

Amstrad PCW SIG, newsletter by AI Warsh, 6889 Crest Av
enue, Riverside, CA 92503-1162. $9 for 6 bi-monthly news
letters on Amstrad CP/M machines.

Historically Brewed, A publication of the Historical Computer
Society. Bimonthly at $18 a year. HCS, 2962 Park Street #1,
Jacksonville, FL 32205. Editor David Greelish. Computer
History and more.

IQLR (International QL Report), contact Bob Dyl, 15 Kilburn
Ct. Newport, RI 02840. Subscription is $20 per year.
Email:IQLR@nccnet.com.

QL Hacker's Joumal (QHJ), Timothy Swenson, 5615 Botkins
Rd., Huber Heights, OH 45424, (513) 233-2178, sent mail &
E-mail.swensotc@ss2.sews.wpafb.af.mil. Free to program
mers of QL's.

Update Magazjne, PO Box 1095, Peru, IN 46970, Subs $18 per
year, supports Sinclair, Timex, and Cambridge computers.
Emil: fdavis@holli.com.

SUPPORT BUSINESSES

Hal Bower writes, sells, and supports BIPBios for Ampro,
SB180, and YASBEC. $69.95. Hal Bower, 7914 Redglobe
Ct., SevernMD 21144-1048, (410)551-5922.

Sydex, PO Box 5700, Eugene OR 97405, (541)683-6033. Sells
several CP/M programs for use with PC Clones ('22Disk'
format/copies CP/M disks using PC mes system).

The Computer Journal/ #79

Elliam Associates, PO Box 2664, Atascadero CA 93423,
(805)466-8440. Sells CP/M user group disks and Amstrad
PCW products. Email:??

Discus Dtitribution Services, Inc. sells CP/M for $150, CBASIC
$600, Fortran-77 $350, Pascal/MT+ $600. 8020 San Miguel
Canyon Rd., Salinas CA 93907, (408)663-6966.

Microcomputer Mail-Order Library of books, manuals, and
periodicals in general and HlZenith in particular. Borrow items
for small fees. Contact Lee Hart, 4209 France Ave. North,
Robbinsdale MN 55422, (612)533-3226.

Star-K Software Systems Corp. PO Box 209, Mt. Kisco, NY
10549, (914)241-0287,BBS: (914)241-3307. SK*DOS 6809/
68000 operating system and software. Some educational prod
ucts, call for catalog.

Peripheral Technology, 1250 E. Piedmont Rd., Marietta, GA
30067, (404)973-2156. 6809/68000 single board system. 68K
ISA bus compatible system.

Hazelwood Computers, RR#I, Box 36, Hwy 94@Bluffton,
Rhineland, MO 65069, (314)236-4372. Some SS-50 6809
boards and new 68000 systems.

AAA Chicago Computers, Jerry Koppel, (708)681-3782. SS
50 6809 boards and systems. Very limited quanity, call for
information.

MicroSolutions Computer Products, 132 W. Lincoln Hwy,
DeKalb, IL 60115, (815)756-3411. Make disk copying pro
gram for CP/M systems, that runs on CP/M sytems, UNIFROM
Format-translation. Also PCIZ80 CompatiCard and UniDos
products. Web page: http://www.micro-solutions.com.

GIMIXIOS-9, GMX, 3223 Arnold Lane, Northbrook, IL 60062,
(800)559-0909, (708)559-0909, FAX (708)559-0942. Repair
and support of new and old 6800/6809/68K1SS-50 systems.

n1SYSTEMS, Terry Hazen, 21460 Bear Creek Rd, Los Gatos
CA 95030-9429, (408)354-7188, sells and supports theMDISK
add-on RAM disk for the Ampro LB. PCB $29, assembled
PCB $129, includes driver software, manual.

Corvatek, 561 N.W. Van Buren St. Corvallis OR 97330,
(503)752-4833. PC style to serial keyboard adapter for Xerox,
Kaypros, Franklin, Apples, $129. Other models supported.

Morgan, Thielmann & Associates services NON-PC compat
ible computers including CP/M as well as clones. Call Jerry
Davis for more information (408) 972-1965.

Jim S. Thale Jr., 1150 Somerset Ave., Deerfield IL 60015
2944, (708)948-5731. Sells I/O board for YASBEC. Adds
HD drives, 2 serial, 2 parallel ports. Partial kit $150, complete
kit $210.

Trio Company of Cheektowaga, Ltd., PO Box 594,
Cheektowaga NY 14225, (716)892-9630. Sells CP/M (& PC)
packages: InfoStar 1.5 ($160); SuperSort 1.6 ($130), and
WordStar4.0 ($130).

Parts is Parts, Mike Zinkow, 137 Barkley Ave., Clifton NJ
07011-3244, (201)340-7333. Supports Zenith Z-I00 with parts
and service.

DYNACOMP, 178 Phillips Rd. Webster, NY 14580, (800)828
6772. Supplying versions of CP/M, TRS80, Apple, CoCo,
Atari, PCIXT, software for older 8/16 bit systems. Call for
older catalog.

43

as the resutt is known.
oS-l00: There's still life in the old bus.
o Advanced CP/M: Passing paramete,.., and

complex em>r recovery.

Issue Number 44:

o Animation with Turbo C Part 1: The Ba.ic
Tool•.

o Multitasking in Forth: New Micros F68FCt t
and Max Follh.

o Mysteries 01 PC Floppy Di.ks Revealed: FM
MFM, and the twisted cable. '

o Do.Di.k: M5-DOS disk emulator for CP/M.
o Advanced CP/M: ZMATE and u.ing lookup

and dispatch lor passing paramete,...
o Forth Column: Handting Strings.
o Z-System Comer. MEX and telecommuni

cations.

Is.ue Number 45:

o Embedded Systems lor the Tenderfoot
Getting started with the 8031.

o Z-sy.tem Corner. Using script. with MEX.
o The Z-System and Turbo Pascal: Patching

TURBO.COM to access the Z-System.
o Embedded Applications: Designing a Z80

RS-232 communications gateway, part 1.
o Advanced CP/M: String .earches and tuning

Jetfind.
o Animation with Turbo C: Part 2, .creen

interacticns.
o Real Computing: The NS32000.

Is.ue Number .6:

o Bu~d a Long Distance Printer Driver.
o Using the 8031's buill-in UAAT.
o Foundational Modules in Module 2.
o The Z-System Comer. PatChing The Word

Plus .pell checker, and the ZMATE macro
lext editor.

o Animation with Turbo C: Text in the graphics
mode.

o zao Communications Gateway: Prototyping
and uSing the Z80 CTC.

Issue Number .7:

oControlling Stepper Mot.... with the 68HC11 F
o Z.,sy.tem Comer. ZMATE Macro Language
o U.ing 8031 Interrupts
o T-t: What it is & Why You Need to Know
o ZCPR3 & Modula, Too
oTrps on Using LCOs: Interlacing to the

68HC705
o Real Computing: Debugging, NS32 MulIi-

tasking & Distributed Systems
o Long Distance Printer Driver. correction
o AOBQ.SOG 90

Issue Number 48:

o Fast Math Using Logarithms
o Forth and Forth Assembler
o Modula-2 and the TCAP
o Adding a Bemoulli Drive to a CP/M Computer

(Building a SCSI Interlace)
o Review 01 BOS 'r
o PMATEIZMATE Macros, Pt. 1
o Z-System Comer. Patching MEX-Plus and

TheWord, Using ZEX

Issue Number .9:

oComputer Network Power Protection
o Floppy Disk Alignment wlRTXEB, Pt. t
o Motor Control with the F68HCll
o Home Heating & Lighting, Pt. 1
o Getting Started in As.embly Language
o PMATEIZMATE Macros, Pt. 2
o Z-sy.tem Comerl Z-Sest Software

Issue Number 50:

o OIfIoad a System CPU with the Z181
o Floppy Disk Alignment wlRTXEB, Pt. 2
o Motor Control with the F68HCl t
o Modula-2 and the Command Line
o Home Heating & Lighting, Pt. 2
o Getting Started inembly Language, Pt.2
o Local Area Networ1<s
o Using the ZePR3 lOP
o PMATElZMATE Macros, Pt. 3
o Z-System Comer, PCED/ Z-Best Software
o Real Computing, 32FX t 6, Caches

Issue Number 51:

o Introducing the YASBEC
o Floppy Disk Alignment wIATXEB, Pt 3
o High Speed Modems on Eight Bit Systems
o A za Talker and Host
o Local Area Networks-Ethemet
o UNIX Connectivity on the Cheap
o PC Hard Disk Partition Table
o A Short Introduction to Forth

Issue Number 39:

• Programming for Performance: Assembly
Language techniques.

o Computer Aided PUblishing: The HP
LaserJet.

o The Z-Sy.tem Comer. Sy.tem
enhancements with NZCOM.

o Generating LaserJel Fonts: A review of Digi-
Font.. ','

o Advanced CP/M: Making old programs Z
System aware.

o C PointelS, Arrays & Structure. Made
Easier. Part 3: Structures.

o Shells: U.ing ARUNZ alias with ZCAL.
o Real Computing: The National

Semiconductor NS320XX.

Issue Number 40:

o Programming the La.erJet: Using the
escape codes.

o Beginning Forth Column: Introduction.
o Advanced FOlIh Column: Variant Record.

and Modules.
o L1NKPRL: Generating the bit maps fa PRL

files from a REL file.
o WordTech's dBXL: Writing your own custom

designed bu.iness program.
o Advanced CP/M: ZEX 5.0xThe machine and

the language.
o Programming lor Pertormance: A.sembly

language techniques.
o Programming Input/Output With C: Keyboard

and screen functions.
o The Z-System Comer. Remote access

systems and BDS C.
o Real Computing: The NS320XX

Issue Number.1:

o Forth Column: ADT., Object Oriented
Concept•.

o Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

o How to add Data Structures in Forth
o Advanced CP/M: CP/M i. hacke(s haven

and Z-System Command Scheduler. '
o The Z-System Comer. Extended Multiple

Command Line, and aliases.
o Di.k and printer function. with C.
o LINKPRL: Making RSXes ea.y.
o SCOPY: Copying a .eries 01 unrelated files.

Is.ue Number .2:

o Dynamic Memory Allocation: Allocating
memory at runtime w~h examples in Forth.

o Using BYE with NZCOM.
o e and the MS-DOS Character Attribute•.
o Forth Column: Li.ts and object oriented

Forth.

o The Z-Sy.tem Comer. Genie, BDS Z and Z
Sy.tem Fundamental•.

o 68705 Embedded Controller Application: A
single-chip microcontroller application.

o Advanced CP/M: PluPertect Writer and
u.ing BOS C with REL files.

Issue Number .3:

o Standardize Your Floppy Disk Drives.
o A New Hi.tory Shell for ZSystem.
o Heath's HDOS, Then and Now.
o The ZSystem Comer. Software update

.ervice, and cu.tomizing NZCOM.
o Graphics Programming With C: Routines for

the IBM PC, and the Turbo C library.
o Lazy Evaluation: End the evaluation a••oon

"sue Number 34:
o Developing a File Encryption System.
o Database: A continuation 01 the data base

primer series.
o A Simple MuRita.king Executive: Designing

an embedded controller muMasking
executive.

o ZCPR3: Aelocatable code, PRL files,
ZCP~, and Type. programs.

o New Microcontrollers Have Smarts: Chips
with BASIC a Forth in ROM are easy to
program.

o Advanced CP/M: OS exten.ion. to BDOS
and BIOS, ASXllor CP/M 2.2.

o MacintOlh Data File Conversion in Turbo
Pascal.

1.lue Number 35:

o All Thi. & Modu1a-2: A PascaHike
altemative.

o A Short Cou.... in Source Code Generation:
Di....ambling 8088 .oftwaAl to produce
modifiable ssm 'ource code.

o Real Computing: The NS32032.
o S-I00: EPROM Bumer project for S-1 00

hardware hackers.
o Advanced CP/M: An up-to-date DOS, plu.

details on file structure and formats.
o AEL-5lyIeembIy Language for CP/M

and Z-Syttem. Part 1: Selecting your
..sembler, inker and debugger.

Issue Number 36:

o Information Engineering: Introducticn.
o Modula-2: A li.t 01 reference books.
o Temperature Measurement & Control:

Agricuttural computer application.
o ZCPR3 Comer. Z-Nodes, Z-Plan, Amstrand

computer, and ZFILE.
o Real Computing: NS32032 experimenter

hardware, CPUS in .eries, software option•.
o SPRINT: A review.
o REL-Slyleambly Language for CP/M &

ZSystems, part 2.
o Advanced CP/M: Environmental

progranvning.

Issue Number 37:

o C Pointers, Arrays & Structures Made
Easier. Part I, Pointers.

o ZCPR3 Corner. Z-Nedes, patching for
NZCOM, ZFILEA.

o Information Engineertng: Basic Concept.:
lieIds, lield definition, clienl wor1<sheel•.

o Shells: Using ZCPR3 named .hell variables
to store date variables.

o Resident Programs: A detailed look at TSRs
& how they can lead to chaos.

o Advanced CP/M: Rawand cooked console
VO.

o ZSDOS: Anatomy 01 an Operating System:
P.rt 1.

Volume Number 1: Illu.. 1 III 1 0 Uliput Z-Node I
oSol intelfacing and Modem tranofe,.. 0 Using SCSI for Generalized VO ssue Number 38:
o Floppy disk lormats, Print 'pooler. 0 Communicating with Floppy Disks: Di.k : C Math: Dollars ~nd Cents W~h C.
o Adding 8087 Math Chip, Fiber Ofllics Paramete,.. & their variations Advanced CP/M. Batch Proce••,ng and a
o S-l00 HI-RES graphics. 0 XBIOS: A Replacement BIOS for the SB180 New ZEX.
o COnlrolling DC motors, MultHJser column. 0 K.QS ONE and the SAGE: Demy.titying 0 C Po,nters, Arrays & Structures Made
o VIC-20 EPROM Prograrrmer, CP/M 3.0. Operating Systems Easler. Part 2, Anay•.
o CP/M userlunctions and iritegration. 0 Aemole: Designing a Remote Sy.tem 0 Z-System Comer. Shell. and ZEX, ZoNode

Program Central, .ystem securrty under Z-Systems.
VolUme Number 2: 1.._ 10 to 11 0 The ZCPR3 Comer. ARUNZ Documentation 0 Information Engineering: The portable
o Forth tutorial and Write Your Own. Information Age.
068008 CPU lor S-I00. Issue Number 32: 0 Computer Aided Publishing: lritroduction to
o RPM v. CP/M, BIOS Enhancements. 0 copies .till available _ publishing and De.k Top Publi.hing.
o Poor Man'. Di.tributed Pmceaing. 0 Shells: ZEX and hard di.k backups.
oControlling Apple Slepper Mdors. Issue Number 33: 0 Real Computing: The National
o Facsimile Pictures on a Micro. 0 Data File Conversion: Writing a Filter to SemIConductor NS320XX.
o Memory Mapped VO on a ZX81. Convert Foreign File Formats 0 ZSOOS: Anatomy 01 an Operating System,

o Advanced CP/M: ZCPR3PLUS & How to Part 2.
VolUme Number 3: 1.._ 20 to 2ll Write SeN Relocating Code

o Deeigning an 8035 SBC 0 DataBase: The First in a Series on Data
o Using Apple Graphics from CP/M Bas. and Inlormalion Processing
o Soldering & Olher Strange Tales 0 SCSI lor the S-1 00 Bus: Another Example of
o Build an 5-100 Floppy Di.k Controller: SCSI'. V....tility

WD2797 Controller lor CP/M 68K 0 A Mouse on any Hardware: Implementing the
o Extending Turbo Pacal: .art_ Mouae on a Z80 System
o Analog Data Acquisition & Control: 0 Systematic Elimination 01 MS-DOS Files:

Connecting Your Computer to the Real World Part 2, Subdirectories & Extended DOS
..Progl'lllTlming the 8035 SBC Services
o NEW-DOS: __ 0 ZCPA3 Comer. ARUNZ Shells & Patching
oVariability in the BOS C Standard Library WordStar •.O
o The SCSI Intelfece: aeries
o Using Turbo PascailSAM Files
o The Ampro Little Board Column: .ertes
o C Column: serieI
o The Z Column: .ertes
o The SCSllnlerface: Introduc1ion to SCSI
o Editing the CP/M Operating System
o INDEXER: Turbo Pascal Program to Create

an Index
o Inlroduction to Assemble Code lor CP/M
o Ampro 186 Column
o zn",.l: A Real lime Clock for the Ampro Z-

80 Little Board

volume Number .: 111_126 III 31

o Bue Systems: Selecting a Sy.tem Bu.
o Using the SB180 Reel Time Clock
o The SCSI Inlerfece: Soltwarelor the SCSI

Adapter
o IMlide Ampro Comput_
o NEW..[)()S: The CCP Commandl (corrlinued)
oZSIG Comer
o A.ordabIe C Compilers
o Concurrerrt MuMasking: DoubIeDOS
068000 TlnyGian!: Hawthorne'. Low Cost 16-

bit SSC and Operating System
o The Art of Source Code Generalion:

Dis_ambling Z-80 Software
o Feedback Corrtrol System Anely.is: Root

Locue Analysi. & Feedback Loops
o The C Column: Graphics Prirritive Package
o The Hitachi HD641811: New ute for 8-bit

Systems

o ZSIG Corner. Command Line Generators and
Alia...

o A Tutor Program in Forth: Writing a Forth
Tuta in Forth

o Disk Parameters: Modifying the CP/M Di.k
Parameter Block lor Foreign Disk Formats

o Build an AID Converter lor the Ampro Little
Board

o HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA

o Using SCSI lor Real Time Control
o Open Letter to SID Bus Manufecturers
o Plllching Turbo Pascal
o Choosing a Language for Machine Control
o Blllter Software Filter Design
o MOISK: Adding a 1 Meg RAM Disk to Ampro

Little Board, Part 1
o Using the Hitachi hd&41811: Embedded

Processor Design
o 68000: Why use a new OS and the 68000?
o Delecting the 8087 Math Chip
o Floppy Disk Track Structure
o Double Den.ity Floppy Contn:>ller
o ZCPR3 lOP for the Ampro Little Board
o 32000 HackelS' Language
o MOISK: Adding a 1 Meg RAM Disk to Ampro

Little Board, Part 2
o Nal..pr...f11lIive Muttitasking
oSdtwa", Time,.. lor the 68000

44
The Computer Journal / #79

• Stepped Inference in Embedded Control
• Real Computing, the 32CGl60, Swordfiah
• PMATEIZMATE Macros
• Z-System Cemer, The Trenton Festival
• Z-Best Software, the Z3HELP System

Issue Number e2:
• YAS8EC, The Hardware
• An Arb~rary Waveform Generator, Pt. 1
• 8.Y.0. Assembler... in Forth
• Getting Started in Assembly Language, Pt. 3
• The NZCOM lOP
• Servos and the F68HC t 1
• Z-System Comer, Programming for
Compatibil~

• Z-Best Software
• Real Computing, X10 Revis~ed

• PMATEIZMATE Macros
• Home Heating I. Lighting, Pt. 3
• The CPU280, A High Performance S8C

Issue Number e3:
• TheCPU280
• Local A.... NelWDrks
• An Arb~rary Waveform Generator
• Zed Fest '91
• Getting Started in AS9emb1y Language
• The NZCOM lOP

Issue Number M;

• 8.Y.0. Assembler
• Local A.... Networks
• Advanced CP/M
• ZCPR on a 16-8~ Intel Platform
• Real Computing
• Interrupts and the zao
• 8 MHZ on a Ampro
• Hardware Heaven"
• What Zilog never told you about the Super8
• An ArbMI)' Waveform Genel1ltor
• The Development of TOOS

Issue Number ee:
• Fuzzilogy 101
• The Cyclic Redundancy Check in Forth
• The Internetwork Protocol (IP)
• Hardware Heaven
• Real Computing
• Remapping Disk Drives through Virtual 810S
• The 8umbling Mathmatician
·YASMEM

Issue Number e6:
• TCJ - The Next Ten Years
• Input Expansion for 8031
'Z-sysComer-~Fen

+ Connecting IDE Drives to 6-8~ Systems
• 8 Queens in Forth
• A_I Computing - Linux, 8SD 386, Minix
• Kaypr0-84 Direct Rle Transfers
• Analog Signal Genelation

Issue Number e7:
• Z-Sys Comer - Language Independence
• DR. S-100- the start
• Ho... Automalion with X10
• File Transfer Protocols -Info
• MDISK at 8101HZ. - Ampro Update
• Shell Sort in Forth
• Introduction to Forth
• Z AT Last! - ZCPA on a PC? MYzaol

Issue Number es:
• Z-Sys Comer - Language Independence II
• Real Computing - Minix, UZI, and GNU
• Anordable Development Tools
• DR. S-100 - TIps and info
• Mr. Kaypro • Move the Reset
• Computing TImer Values - Monostables, C
• MU~Msking Forth

Issue Number 59:

• Z-sys Comer - ZMATE MACAO usage
• Moving Forth - Part 1
• Center Fold· IMSAI MPU-A
• Developing Turnkey Forth Applications
• Mr. Kaypro - Versions of Kayproa
• DR S-100 - Vendors

Issue Number 60:

• Next Ten Years - Part II
• Moving Forth Part II
• Center Fold - IMSAI CPA
• Fourfor Forth - Forth CPU's
• Debugging Forth
• Z-Sys Comer - 8 years of Z-system
• Mr. Kaypro - Turning a Kaypro II into a IV
• DR S-l00 - Letterll

Issue Number 61:

• Z-Sys Comer - Automating GEnie Mail
• Mulliprocessin9/6809 part I
• Center Fold - XEROX 820
•ac Using the Commodore 64
• Real Computing - JPEG, WORM, archivers
• Support Groups for Classics
• Operating Systems - CP/M
• Mr. Kaypro - 5101Hz Upgrade

Issue Number 62:

• SCSI EPAOM Programmer
• Center Fold - XEROX 820
• DR S-100 - Exploring the S-100 8us
• Moving Forth part III
• Programming the 6526 CIA
• Reminiscing and Musings - 10th Year
• Modem Scripts

Issue Number 63:

• Z-Sys Comer - Fa~safe Scripts in 4DOS
• SCSI EPROM Programmer - part II
• Center Fold - XEAOX 820
• DR S-1 00 - Disk Drives and 810S code
• Mulliprocessing Part II
• 6809 Operating Systems
+ IDE Drives Part II

Issue Number 64:

• Z-Sya Comer - Failsafe Scripts in 4DOS /I
• Smell-G - Review and comment
• Center Fold - last XEROX 820
• DA S-1 00 - Disk Drives and 810S - part II
• Moving Forth Part IV
• Small Systems - 6800'6809 Histol)'
• Mr. Kaypro - Sign on and Clock Upgrade
+ IDE Drives - Part 1/1

Issue Number 6e:
• Small System Support - 68xx Serial Comm
• Sinclair ZX81 - Letters and 800ks
• Center Fold - ZX8G'81
• DA S-100 - Christmas Iellers
• Real Computing - Linux and Linking

• European 8eat - AMSTRAD in Europe
• PCIXT Corner - Day-Qld Computing
• Little Circuits - Reset Circuits
• Levels of Forth - Selecting a Language

Issue Number 66:

• Z-System Corner - Failsafe Scripts in 400S
• Real Computing· TCPIIP and OSI
• Small System Support - 'C' and 68xx
• Center Fold - Advent Decoder 80ard
• DR S-1 00 - Spring Letters
+ Connecting IDE Drives (IDE part IV)
• PClXT Comer - Day-Qld Computing
• Little Circuits - BatteI)' 8ackup Circuits
• MU~iproc...ing Part III

Issue Number 67:

• European Beat - more AMSTRAD histol)'
• Small System Support - 6800109 programs
• Center Fold - SS-5OISS-3O
• DR S-100 - TrentoniZ-Fest I.leliers
• Serial Kaypro InternJpts in Forth
• Real Computing - TIny-TCP and WIN
• Little Circuits· Wire and Cable
• Moving Forth Part 5

Issue Number 6S:
• Small System Support - Languages
• Center Fold - PerteclMits 4PI0
• Z-System Comer II - Intro CP/M and Z-Sys
• PClXT Comer - A brt of evel)'1hing - Part I
• Lillie Circurts - CMOS and RC's
• Multiprocessing Forth Part 4
• Mr. Kaypro - Notes, Repairs, and Macros

Issue Number 69:

• Small System Support - 6809 ASM, Flex
• Center Fold - S-1 00 IDE
• Z-system Comer II -Intro, part 2
• Real Computing - TIny-TCP
• PClXT Comer - Stepper Motors and Forth
• DR S-100 - Mail8ag
• Moving Forth Part 6
• Mr. Kaypro - Advent Decoder Construction

Issue Number 70:

• Small System Support - 6809 ASM
• Center Fold - Juprter ACE
• Z-System Comer II -Intro part 3
• PClXT Comer - Stepper Molors I. Forth
• DR S-100 - Mail8ag
• Mulliprocessing Part 5
• European Beat - 6-bit idiol and AMSTRAD

Issue Number 71:
• Computing Hero of 1994 - David Jaffe
• Small System Support - 6809 ASM
• Center Fold - Hayes SO-t 03A S -1 00 modem
• Power Supply 8asics
• PClXT Comer - Stepper Molors
+ COMecting IDE Drives (5) - GIDE Preview
• DR. S-100 - Generic IDE and CompuPro
• Moving Forth Part 7
• Mr. Kaypro - ROM options
• 8048 Emulator Part 1

Issue Number 72:

• 8eginning PLD - good and bad
• Small Sy.tem Support - 'C' and ASM
• Center Fold - Rockwell R6SF11
• Playing W~h Micros - 5 to leam w~h

• Real Computing - Languages
• Small Tools Part 1 - Forth, 68HC11
• DR S-l00 - CompuPro 808018086
• Moving Forth Part 7.5
• 8048 Emulator Part 2

Issue Number 73:

• $10 Xl - what you can ge1 at a swap meet
• Small System Support - 'C' and ASM
• Center Fold - 640K XT
+ IDE Part 6
• Real Computing - Linux
• Small Tools Part II- New Micros F68HC11
• DR S-100 - Tremon and Letters
• PCIXT Comer - software quandaries
• 8048 Emulator Part 3

Issue Number 74:

• Antique or Junk - How to jUdge your sy.tem
• Small System Support - 'C' and ASM
• Center Fold· S-1 00 Power Supply
• Aeal Computing - Linux and Minix
• AMSTRAD PCW Now
• DR S-100 - Mailbag
• Mr. Kaypro - Adding Composae Mon~ors

• Palmtech CPUZ180 - Review
• DiSk I/O in Forth
• Moving Forth part 8

Issue Number 75:

• The European 8ea1 - Eas1 German Z80
• Small System Support - 'C' and ASM
• Center Fold - Standard 8u. and I/O
• Moving Forth part 8
• Real Compu1ing - Rick moved
• Embedded Control Using the STD Bus
• DR S-100 - Mailbag
• EPROM Simulator
• High-Speed Serial I/O for the Applicard
• Disk I/O in Forth, Pt. 2
• T9600 Source Code (Small Tool.)

Issue Number 76:

• Real Computing - Minix and more
• PClXT Comer - 8ank Switching/Supercharge
• The European 8eat - 10 years for user group
• A~ematives to the XT
• DR S-100 - GIDE and the Jade 8us Probe
• Center Fold - JADE Bus Probe
• PC TIme Clock - Improving Accuracy
• PC Securi1y System - Home Seeuri1y
• Small System Support - 'C' and ASM
• Floppy Disk Problems - design problems

Issue Number 77:
• Mr. Kaypro - External Video
• Hands-on with PLD's
• Center Fold - CPU280
• The First TRS-ao
• Program This' - the zao SIO
• Small System Support - Prime Numbers in C

Issue Number 7S:
• 6502 DIY Board
• Program This! - 8051 Startup Code
• Center Fold - AMR 80552
• Simplex III - Homebuin m CPU
• Aeal Computing - Small C, C-84, Win95
• Small System Support - C and Assembler

U.S. CanadalMexlco EuropefOther
SubscrlpUons (CA not taxable) (Surface) (Air) (Surface) (Air)
lyear (6 issues) $24.00 $32.00 $34.00 $34.00 $44.00
2 years (12 issues) $44.00 $60.00 $64.00 $64.00 $84.00
Back Issues (CA tax) Shipping + Handling for each Issue ordered
Bound Volumes $20.00 ea X$3.oo X$3.50 X$6.50 x$4.oo x$17.00
#32 thru #43 are $3.00 ea. x$1.00 x$1.oo x$1.25 X$1.50 X$2.50
#44 and up are $4.ooea. x$1.25 X$1.25 x$1.75 X$2.oo X$3.50
Items: _

-10% for 10 or more or with subscription,
·15% for 10+ with SUbscription

California Residents add 7.25%

The Computer Journal / #79

Back Issues Total

- discount
Sales TAX

Shipping Total
SUbscription Total

Total Enclosed

Name: _

Address: _

Email: _

Credit Card # - -__-__exp __I__

Payment is accepted by check, money order, or Credit Card (M/C,
VISA, CarteBlanche, Diners ClUb). Checks must be in US funds,
drawn on a US bank. Credit Card orders can call 1(800) 424-8825.

TCl The Computer Journal
P.O. Box 3900, Citrus Heights, CA 95611-3900

Phone (916) 722-4970 I Fax (916) 722-7480

45

The Computer Corner

By Bill Kibler

Well summer is gone and with it all
chances ofcatching up with projects. I
must admit my time off for a trip to
Alaska was enjoyable and I can rec
ommend that people should see Alaska
if possible. Trying to make up for the
time lost and all the problems tbat
happened after I got back may take
some time to recover from however.

System Overload

I had promised to do some program
ming on the side this summer, and
with that came the need to use Win95.
I have moved from using Win 3.1 to
WinNT at work and find that a rather
nice change. I have not exhaustively
tested DOS programs, but then the
main ones I use all do work. That has
been a very big surprise. I thought
most would fail or do something
strange, but it seems I was wrong.

The Win95 actually installed very eas
ily and I was surprised to find all my
PCDOS 7.0 drivers were moved and
used just as they had been before the
change. NT however was installed by
someone else at work and so I was
unable to see what happens when you
upgrade. I think WinNT blows all the
old items away which causes many
problems if there is not an NT driver
for one of your devices.

Win95 solved the driver problem, by
basically using any previous drivers or
better put, by just running a DOS un
der the win program so it still can use
the DOS drivers without problem. I'm
still trying to decide if there really is a
good reason to do it ifyour happy with
Win 3.1 or something else. A friend
who I told not to upgrade feels he
would not do it after what has hap
pened or better put, what he had to

46

relearn and reload. Seems he had lots
of programs with 95 that didn't work
right after the change.

What I find interesting is how
Microsoft is still hiding from the pub
lic how many bugs and problems have
been quietly fixed with upgrades. With
NT you see the "build" number when
it boots. This is sort of their way of
telling you which minor bug fix ver
sion you have. My guess is that there
is some similar way to determine where
in the bug fix loop your version of 95
is, but at present I really don't care
since I know there isn't much you can
do to try and keep up with the changes.
I have heard there are plenty of revi
sions or upgrade packs for 95.

Older Sales

I was told by a friend that he saw
someone selling a IMSAI with front
panel for $4000, I think on the Internet.
Everyone was giving the person a bad
time about the price, only to have him
tell them it was sold already. I think
there are plenty of our readers who
would agree with both sides of the
issue on the price. By that I mean,
some will think it is too much money,
while others and myself say it is only
the beginning. I expect to see similar
stories over the next few years until
the collecting side gets weIl estab
lished.

What will it take to get established? I
am sure a big sale at Sotherby's would
do it. An IMSAI or such going for say
a $100,000 would certainly make some
headlines and send people scrambling.
Do I really think it will happen, yes
but how long is the only question. It
seems to me that collectibles sort of
grow slowly in price till they are rather

scarce. Once the availability of the
items drops from thousands to hun
dreds or reach rare status, then and
only then do people start bidding up
the price.

Are IMSAI's rare, yes and no. The yes
side is from people horCling their older
systems and also from giving up on
trying to sell them. That comes from
so many people being interested in the
latest hardware gimmick at swap
meets, that selling something outside
the normal is pretty much a waste of
time. I haven't seen a S100 card for
sale at a swap meet for years now. It is
getting to be that most buyers have no
idea of what the older systems were or
if they have any value at all. For those
of us who do know an IMSAI from a
PC, a great find ing if they shouldn't
have sold.

The NO side of me says that IMSAI
are not rare, people are just waiting. I
know plenty of people who have nu
merous collectible systems stashed
away. There is not a shortage, just
people waiting for higher prices. If all
goes well, I see a later time when there
will be once or twice a year collectible
computer swap meets. At first prob
ably based on invitation to attend, just
to make sure only vendors of older
systems are there. If PC sellers are
aIlowed, forget it, it will not work.

I feel it would probably be possible to
do one in Silicon Valley now and eas
ily two or three hundred sellers could
be found to come to it. You would get
both the honest buyers and sellers as
well as the media. Once the big TV
shows stopped by and it hit national
news, boom were in business and the
lOOK IMSAI would be but a few years
down the road.

The Computer Journal / #79

The key is finding real collectible ven
dors willing to talk and display their
systems. No junk piles, no boxes of
bad boards, no systems without books
and software. Ofcourse you would need
to let in the few people left who also
support the old systems with maga
zines, software, and hardware fixes. It
can't be some parking lot sale or some
business back lot. You got to rent a
real convention hall with guards,
drinks, and vendor booths all which
means some money up front. But be
prepared to talk more than sell the
first few years!

Hardware

Prices of new hardware keep dropping
and for those using the PC platform,
power and more has become very
cheap. When I visited my cousin in
Alaska, we talked Internet, and I of
fered to build them a system for $300.
I could have bought several used 386
systems already setup for the Internet
from local used dealers. I had however
many pieces to make a system and at
first was only going to buy a new case
for them.

A local dealer however had a few sales
going and 300 became $600 for a 586
with a 16Meg SIMM and a 1 gig drive.
I ran some tests and found the system
very fast and was very surprised at the
VLB video card. It was faster than my
PCI bus video card. It seems the VLB
is better tuned for video, while the PCI
is a faster overall bus. The cost was
$40 for the mother board, $60 for the
586, and $110 for the ram. I had
planned on buying wholesale, but the
1 gig drives where going for less than
my wholesale quotes. The drive got
me in the store and then I found the
other items and bought quick before
they were gone.

When looking at PC hardware items,
it can seem that the PC market has
gone crazy, but so have others. The
embedded hardware sales literature
keeps coming faster than I can read it.
The people behind the PIC chips can't
make new versions fast enough.
Motorola is spinning otT variations of
their 6805 and 6811' s like mad. I be
lieve there is now a 80151 that fits in
between the old standby 8051 and the

The Computer Journal / #79

new 80251 high end. Numerous Japa
nese vendors are making big inroads
with their own chips as well.

I think the only other area that has
been getting more news than all the
hardware vendors is the battle brew
ing over cheap Internet boxes. Several
vendors are planning on having sys
tems ready to sell by TillS Christmas.
Cable companies are trying to get hard
ware in place and software on line to
meet the hoped for demand. I think
the demand will be there, but plenty of
behind the scenes action has to hap
pen first.

There is more than enough people who
feel that a melt down will happen if
even half the people start getting on
line that could now. What would hap
pen if all the Christmas buyers really
did buy and tried to get on is any
bodies guess. My guess for this year is
forget being on the Internet for all of
January. Ask any BBS owner and they
will tell you how the next few weeks
after Christmas is a nightmare. All
these first time users with their new
modems learning how to use them on
your BBS. Now take that concept and
give them the Internet. Just plan on
giving it to them, since you will not be
able to use the Internet till they burn
out or give up.

Projects

The project queue is very deep and got
thrown off track over the summer. I
had a few great plans to sort of catch
up, but we lost three Llamas this sum
mer to heat, two of my wife's relatives
were buried, all in 45 days. Busy is an
understatement for me. The hot
weather is stiIl lingering longer than
normal and since my hardware shop
has no cooling, I have been forced out
of it for a little longer. What will I be
doing?

Number one on my list to do is hook
ing up my pile of S100 systems. I
stacked them up in my shop next to
the work table. I start with a hard
drive, 3 tiers of 8 inch drives, two S
100 cabinets, and a 5 inch hard drive
for a total offour feet of systems. I am
thinking of using a Z-lOO system as a
terminal and disk interface. I have

other ideas in mind for hooking them
altogether, but it is still too early to
know how that will actually be done.

The idea is to be able to test some
older hardware and get BIOS listings
otT of the many disks I have. The CP/
M and TCJ CORaM is still in the
works, just dragging behind a little. I
think Oave is getting all the items
working so the hard disk with the cur
rent CORaM software can be on his
BBS. My plans are to add to that drive
until we get a CORaM full. We will
review the contents periodically and
keep you posted. Ifyou can add BIOS
code or embedded software please help
out. Remember however that DR! prod
ucts are copyrighted and still not pub
lic domain. BIOS code in many cases
was not protected, while some was and
may still be even if the company has
gone out of business. When a compa
nies assets were bought by another, all
copyrights normally went as well. My
hopes are to put software on the BBS
and if nobody complains after some
reasonable amount of time, we can
assume that sets a precedence, and we
can then include it on the CDROM. If
a rightful owner does complain, otT it
comes with our apologies and the
COROM will then indicate who does
have the rights and where to mail let
ters if you need support.

I suppose one way out would be to
make sure that all text referring to
copyright and ownership has been re
moved before we get it, but then that
would not be legal. We do try to be
legal at TCJ even if the companies
make it very hard by refusing to allow
releasing information that is needed to
keep a system running 10 years after
the company went of business.

I had numerous plans in the wings and
will try getting to them for later is
sues, but for now, keep hacking and
let me know how your fun is going!

Bill.

47

TCJ CLASSIFIED - Items Wanted and For Sale

Commercial Advertising Rates:

CLASSIFIED RATES!
$5.00 PER LISTING!

Microprocessor, Digital, and
Analog circuit design.
PC layout and more.

Voice (916) 722-3877
Fax (916) 722-7480
BSS (916) 722-5799

Classified ads in TCJ
get results, FAST!

Need to sell that special older
system - TRY TCJ.

World Wide Coverage
with Readers interested in what

YOU have to sell.
Provide a support service,

our readers are looking for
assistance with their older

systems - all the time.
The best deal in magzines,

TCJ Classified
it works!

~ ~
Payue, fiL .JJ::J'U -r,vo, 1.

Kibler Electronics

8051, 6805, 280, 68000, x86
PLC Support and

Documentation

Hardware Design &
Software Programming

TCJ ADS WORK!

Bill Kibler
P.O. Box 535

Lincoln, CA 95648-0535
(916) 645-1670

e·mail: kibler@psyber.com
http://www.psyber.com/-kibler

FOR SALE: THE FORm ARCHIVE
from taygeta.com on CORaM is avail
able from Mountain View Press, Rt 2
Box 429, La Honda, CA. 94020
Ph: 415-747-0760
ghaydon@forsythe.stanford.edu.

FOR SALE: Kaypro 2, appears to be
in good condition, located in Indiana.
Call Bob Finch, 317-564-4226.

Historically Brewed. The magazine of
the Historical Computer Society. Read
about the people and machines which
changed our world. Buy, sell and trade
"antique" computers. Subscriptions $14,
or try an issue for $3. HCS, 3649
Herschel St., Jacksonville, FL 32205.

THE CASE AGAINST PATENTS
Throughly tested and proven alterna
tives that work in the real world. $33.50.
Synergetics Press, Box 809-J, Thatcher
AZ,85552.

Start your own technical venture! Don
Lancaster's newly updated INCRED
IBLE SECRET MONEY MACIDNE
IT tells how. We now have autographed
copies of the Guru's underground clas
sic for $21.50. Synergetics Press, Box
809-J, Thatcher AZ, 85552.

Wanted: Form filling software for the
KayPro CP/M computer. Trying to find
"Formation" by PBT software once of
Grand Rapids, MI, or "StanForm" by
MAP, Micro-Art Programmers. Other
software capable of filling out pre
printed forms considered. Help give a
KayPro meaningful work! Please reply
to Stephen Stone -Tel. (805)569-8329
or stephen@silcom.com

Wanted: Intel SDK-85 documentation.
This is a single board design kit with
the 8085 CPU, includes a hex keypad
and 7 segment LED readout. I have
several of these units and would con
sider trading for interesting older com
puters. Ron Wintriss, 100 Highland
Ave., Lisbon, NH 03585.

TRS-80 - MODELS I, 2, ITI, IV, 12,
16, POCKET COMPUTER, AND
COCO: Software, hardware, internal
and external disk drives (360Kl720K),
hard drive's (both complete and bubles),
replacement motherboards, floppy drive
controllers, video boards, RS-232
boards, keyboards, and more. Send
4xl0 SASE for list.
Pete Bumgardner, Rt. 4 Box 36-H, Fort

4+
$90
$60
$45
$40
$120/yr

Once
$150
$80
$60
$50
$30

Send your items to:
The Computer Journal

P.O. Box 3900
Citrus Heights, CA 95611-3900

DI8s
Electronic Design

Dave Baldwin

Size
Full
1/2 Page
1/3 Page
1/4 Page
Market Place

TCJ Classified ads are on a prepaid
basis only. The cost is $5.00 per ad
entry. Support wanted is a free service
to subscribers who need to find old or
missing documentation or software.
Please limit your requests to one type of
system.

CmCAGO TI99/4a Classic Computer
Faire (14th annual) will be held No
vember 9th, 1996 at the Evanston Pub
lic Library in Evanston, Illinois. For
more information please contact Hal
Shanafield, (847) 864-8644 or Chicago
TIUG, P.O. Box 7009, Evanston, IL
60204-7009. Specifically for owners of
TI99/4a and Geneve 9640 computers!

48 The Computer Journal / #79

Advent Kaypro Upgrades

TurboROM. Allows flexible
configuration of your entire

system, read/write additional
formats and more, only $35.

Replacement Floppy drives and
Hard Drive Conversion Kits. Call
or write for availability & pricing.

Call (916)483-0312
eves. weekends or write

Chuck Stafford
4000 Norris Ave.

Sacramento, CA 95821

Discover
The Z-Letter

The Z-Ietter is the only publication
exclusively for CP/M and the Z-System.
Eagle computers and Spellbinder
support. Licensed CP/M distributor.

Subscriptions: $18 US, $22 Canada and
Mexico, $36 Overseas. Write or call
for free sample.

The Z-Letter
Lambda Software Publishing

149 West Hilliard Lane
Eugene, OR 97404-3057

(541) 688-3563

I...;....·•• ...;......;......;......;...M...;...····...;...a...;...<...;...10...;.../...;...I<...;...e...;...·····•...;...t...;...• ...;......;...8...;.../...;...II...;...a...;...c...;...<···...;.../e_····...;......;...~I TCJ The Computer Journal

r TCJ MARKET PLACE ~
Advertising for small business

First Insertion: $30
Reinsertion: $25
Full Six issues $120

Rates include typesetting.
Payment must accompany order.
VISA, MasterCard, Diner's Club,
Carte Blanche accepted. Checks,
money orders must be US funds.
Resetting of ad cons/tutes a new

advertisement at first time
insertion rates. Mail ad or

contact
The Computer Journal

P.O. Box 3900
Citrus Heights, CA 95611-3900

(916) 722-4970
Fax (916) 722-7480

CP/M SOFTWARE
100 page Public Domain Cata
log, $8.50 plus $1.50 shipping
and handling. New CP/M 2.2
manual $19.95 plus shipping.
Also MS-DOS software. Disk
Copying including AMSTRAD.
Send self addressed, stamped
envelope for free Flyer, Cata
log $1.00.

Elliam Associates
Box 2664

Atascadero, CA 93423
805-466-8440

VINTAGE COMPUTERS
IBM Compatibles

Tested - Used Parts for
PC/XT AT PS/2

Working systems from $50
All parts including

cases monitors floppies
hard drives MFM RLL IDE

Technical Specs
Send 5x7 SASE to:

Vintage Computers
Paul Lawson

1673 Litchfield Turnpike
Woodbridge, CT 06525
or call for a faxed list

203-389-0104

o More Microcontrollers.
o Faster Hardware.
o Faster Software.
o More Productive.
o More Tools and Utilities.

Low cost SSG's from $84. Get it
done today! Not next month.
For brochure or applications:

AM Research
P.O. Box 43

Loomis, CA 95650-9701
1(800) 949-8051

http://www.AMResearch.com

VERSATILE 80C32 AND 68HCll
SINGLE BOARD COMPUTERS

The DC8032·1 includ.. the following:
'11.059 MHz 8OC32 proo.."",.
• 32K 01 EPROM.
• 4 differenl memory maps.
• Exlended BASIC·52 with 28 addilooal commands.
The DC68"·1 includes the following:
• BMHz MC68HC11 processor.
• 32K 01 EPROM jumper selectable as 2 16K Eproms.
• MBASIC11 with custom analog and digital VO commands.
All unils include the following standa-d fealures:
, 32K 01 baKery·bad<ed RAM.
• Real timecloell.
• 8-channel/8-lil AlD.
• Centr""ics parallel printer port.
• 24-bils of digital VO.
, Watch dog timer.
• • x 6 inch board size.
• Operat.. "" a single g to 12 volt DC power suppy.
• 40-pn expansion comector.
• RS·232 port.
• 30 day m""ey bad< guaranlee.
• One year pa-ts <V1d labor warranty.
All unit come with a 9 voll DC wall cube, serial cable, users manual,
and DC_TERM terminal software. A uti~ty dis!< 01 shareware and
freeware is also included at no charge.

O. C. MICROS ~140.00 kit or assembled and
1843 Sumner Cl. tested. Add $5.00 shipping
Las Cruces, NM 88001 and handling plus $5.00 tar
Ph. (50S) 524-4029 COO

THE FORTH SOURCE

Hardware & Software

MOUNTAIN VIEW
PRESS

Glen B. Haydon, M.D.
Route 2 Box 429

La Honda, CA 94020

(415) 747-0760

http://www.taygeta.com/jfar/m vp. hI mI

$79.95 68HCll
Single Board

8K EEPROM for More ComputerProgram Spacet
SBC-8KSEfl.4C, Oplio.... II(

_EEPROM"0

a I!l (]
• Small SIze, 3.3·xJ.6·
• Low Power. <60 mao-liJ (] • 8192 Bytes EEPROMC1lill .~~ (] • 256 Bytes RAM........"..
.DB-9RS-m

~~~~rn
• 24-TrL 110 Bill
• 8-AID Inputli

!:! l~ 0······ (] • Power Reset C'lmlit
• 8 Mhz Clock

" . • 'a [] • Loc Data with SER-8C

II. Complete 118HC11 Development System.
New ·CodeLoad+ 2.0· and Sample Programs.

No EPROMs or EPROM Programmersl
500 Pag8ll of Manuals, 3.5· Utility Disk.

LOG Electronics .~
1445 Parran Road Volce I FflJI.

SL Leonard, MD 20685 410-586-2177



TCl The Computer Journal
Post Office Box 3900

Citrus Heights, CA 95611-3900
United States

Phone: 1-800-424-8825 or (916) 722-4970
Fax (916) 722-7480 I BaS (916) 722-5799

ADDRESS CORRECTION REQUESTED
FORWARDING AND RETURN POSTAGE

GUARANTEED

Check Out the NEW return
Address and phone numbers!
BBS, FAX, and WEB SITE!

Advanced Systems
and Modems This Issue!

Check label for expiration issue
and renew early.

BULK RATE
US POSTAGE

PAID
Citrus Heights, CA

PERMIT NO. 668


